
Whitepaper

The DevOps
Roadmap for
Security
Security teams can take on a new role in the DevOps
movement by embracing modern application security
tooling, principles, and practices.

Table of Contents
01	 Introduction�
02	 Where DevOps fits in

03	 Why DevOps matters to security

04	 Unifying the teams	

02	 Establish feedback loops in the runtime environment
05	 A defensive thinking approach

06	 Proactive web defense tooling

07	 Application security feedback

08	 Usage feedback	

03	 Unite security and engineering culture
09	 What culture means to security

10	 Pragmatic technical changes

11	 Lean security and eliminating waste

12	 Democratization of security data	
	
	

04	 Delivery cadence
13	 Why is delivery cadence important?

14	 Three common practices with security implications

15	 Smaller changes are easier to rationalize

16	 Automated testing

17	 Assurance and confidence in changes	

05	 Treat everything as code
18	 Version controlled artifacts

19	 Configuration management

20	 Testing

21	 Cloud and distributed computing

22	 Software supply chain

23	 Following the Roadmap

24	 Endnotes

25	 Protect your apps and APIs everywhere from a single solution

The DevOps Roadmap for Security 2

3The DevOps Roadmap for Security

Introduction
Information security is in crisis. We see it in the murmurs
of product teams, we see it in the countenance of
other infosec professionals. Much worse, we see it in
the headlines which serve as a nagging reminder that
no matter what we do, we have an inability to deliver
software without vulnerabilities. This isn’t a crisis that has
sprung up all of a sudden, but a long-standing, systemic
outpouring of the practices and policies that security has
built over decades of misalignment inside organizations
large and small.

In the book Agile Application Security, the authors
point out that “many security teams work with a world-
view where their goal is to inhibit change as much
as possible.”1 When was the last time you heard of a
business touting that it inhibited change as a competitive
advantage? Of course, never. Inhibiting change shows a
disconnect between security and the reality of modern
software delivery practices. Is it any wonder that security
is often the most disliked group in organizations and is
facing a crisis among its ranks?

This aversion to change would be very forgivable if
it actually made software safer. If organizations with
security teams that inhibited as much change as possible
stood up and announced that, through their tough
posture on change, they were delivering their software
vulnerability-free, then this aversion to change would be
more forgivable because it would result in safer software.
The problem is that this just isn’t the case.

In his latest book, Thinking Security, Steven Bellovin
writes, “Companies are spending a great deal on security,
but we still read of massive computer-related attacks.
Clearly something is wrong.” We see this truth revealed
regularly in the media when security breaches occur
accompanied by headlines that highlight the failings
of major companies, some of which even specialize in
security.

Bellovin goes on to highlight the same point that the
authors of Agile Application Security share.	

He writes, “The root of the problem is twofold: we’re
protecting (and spending money on protecting) the wrong
things, and we’re hurting productivity in the process.”2

Yet all is not lost. It doesn’t have to be this way. In fact,
there are many organizations that are integrating security
with business outcomes in mind. This is often done under
the banner of DevOps, DevSecOps, or secure DevOps.
The secure DevOps movement represents the joining of
Security to DevOps because it turns out the two have
more in common than people think and the organization
as a whole benefits immensely from the outcomes of their
collaboration.

Where DevOps fits in
DevOps is a culture, movement, and practice that enables
collaboration between development and operations
teams throughout the entire software delivery lifecycle,
from design and development to production support. It
breaks down entrenched silos, allowing organizations to
transition from functional area delivery to a more holistic
approach.

This results in robust processes, exponential
improvements in deployment times, and ultimately,
superior results for a company’s bottom line. Since
DevOps was first coined in 2009,³ it has been a massive
movement among engineering-focused organizations.
For an example of how DevOps enables orgs to respond
to market needs while embracing security, the Puppet’s
State of DevOps 2022 report: “Today, 83% of IT decision
makers report their organization is implementing DevOps
practices.”4

4The DevOps Roadmap for Security

“Good security practices and better
security outcomes are enabled by DevOps
practices. As DevOps practices improve,
DevSecOps naturally follows. High-
evolution organizations have shifted left,
with majorities integrating security into
requirements (51%), design (61%), build
(53%), and testing (52%).”
— Puppet’s State of DevOps report 2022

DevOps has four key transformational areas:

1.	 Transformation area 1
It creates feedback loops in the runtime environment to inform security, development, and operations.

2.	 Transformation area 2
It shifts engineering culture towards total delivery and user experience.

3.	 Transformation area 3
It favors a faster delivery cadence and a reduction in changes per delivery.

4.	 Transformation area 4
It treats all systems and infrastructure as code.

In each of these areas, there’s a common body of principles, practices, and tooling that’s rapidly evolving. The DevOps
Roadmap for Security will help you navigate these areas and suggest realistic ways for security teams to leverage
production visibility and overall get more involved with DevOps.

The DevOps Roadmap for Security

Why DevOps matters to security
It’s safe to assume that if you aren’t considering DevOps
now, the market may soon decide for you. According to
a survey and published report by CA,5 there are five key
benefits to DevOps adoption:

•	 Provides new software or services that would
otherwise not be available. This arms organizations
with a new playbook for cloud delivery,
microservices, and software-as-a-service (SaaS)
offerings.

•	 Reduces time spent fixing and maintaining
applications. DevOps practices have proven to
require less break-fix work and decrease the mean
time to recover (MTTR) from outages.

•	 Improves cross-departmental collaboration.
DevOps enables collaboration across functional
silos. Organizations that adopt it are witnessing the
benefits first hand.

•	 Increases revenue. In his book, Leading the
Transformation: Applying Agile and DevOps
Principles at Scale,6 Gary Gruver directly tied
DevOps transformations to bottom-line impact in
HP’s printer business by reducing costs by $45MM
and freeing up 35% capacity for new innovation.
This is a significant impact on the business.

	
The benefits of DevOps are clear for organizations of all
sizes, and the adoption rate suggests that even more
evidence will be forthcoming.

Unifying the teams
DevOps is concerned with uniting two particular
teams: development and operations. These teams have
seemingly opposing concerns: developers value features
while operations value stability.

5

6The DevOps Roadmap for Security

Establish feedback loops in the
runtime environment
For security, the worst feedback loop is the breach
feedback loop—the one where your company’s name is
in the headlines for the wrong reasons. Companies want
to avoid the breach feedback loop and DevOps teams
see this as part of their mission. What is interesting
about many high-performing DevOps teams is where and
how they’re layering in defenses. The first place where
many DevOps teams are focused on is defending the
application layer. The DevSecOps Community Survey
2020 found that one-in-four companies experienced a
web application security breach in the last 12 months7.	
Across the board, the industry is seeing the attack
surface move to the application.

Since the web application is the modern attack surface,
it’s often the best place to start instrumenting feedback
loops. The kind of feedback loops we want to create are
the ones that connect application runtime in production
to development. This way, when breaches occur — or
begin to occur — automated defenses are triggered, or
development staff is notified and ready to respond.

Feedback loops aren’t a new idea—they’re almost so
inherent, so human, that it feels odd to specifically call
them out at times. From human relationships to complex
industrial systems to military strategy, feedback loops
are foundational. In military strategy, there are Observe,
Orient, Decide, Act (OODA) loops8 and in the best selling
book The Lean Startup, the feedback loop is identified as
the Build-Measure-Learn cycle.9 Yet somehow, software
development struggles with defining feedback loops.

It’s still common, though increasingly less so, to have
production software where users report outages before
the development, operations, and security staff are even
aware of it. If security is to be successful in the new,
shorter DevOps cycles, feedback loops have to improve.

Once an organization has shifted thinking and processes
to orient around a fast delivery cycle, the security team
will need to quickly put feedback loops in place.	

Reported a web app breach or suspected
breach within the past 12 months

Gaining insight into the rapidly-changing runtime
environment gives security the ability to collaborate
with development and operations to respond to an event
before it becomes a threat.

A defensive thinking approach
At the risk of over-simplifying security concepts, defense
requires knowing answers to two first-order questions:

•	 Am I currently being attacked?

•	 What vector of attack is being attempted?	

This is further complicated by second-order factors such
as analyzing the likelihood of success and determining
the potential cost of compromise. The security industry
at large generally isn’t equipped to address these
questions due to a lack of first-order data—namely their
limited insight into the frequency and types of attacks.
Surprisingly, most organizations can’t even approximate
an answer to these questions.

7The DevOps Roadmap for Security

In a DevOps context, there are three areas where security
provides direct value to the enterprise, utilizing value from
integrations across the organization. Each of these areas
can give insight into the first-order questions and, through
instrumentation, can shift to a defensive thinking approach.
When providing security defense in a web context, there
are three key areas to evaluate: proactive web defense
tooling, application security, and usage feedback.

Proactive web defense tooling
You can’t defend against what you can’t see. Realworld
application layer attacks do not always come in the form
of OWASP Top 10 injection attacks. Several web attack
patterns can hide in plain sight if you don’t have proactive
application security tooling in place that shows you and
your development team how threat actors are attacking
your apps and APIs in production. These attacks include
account takeover via credential stuffing to forceful
browsing to backdoor file discovery attempts.

For example, an attacker could try to submit obfuscated
values in an attempt at command execution or traversing
web server directories. Or your app’s authentication
flow could be manipulated as an attacker tests stolen
credentials to find the valid ones. These are just a

The security training fallacy
It’s common for application security teams to see application-level vulnerabilities like XSS or command
execution and turn to developer training as a solution. While training is a good thing, even if done well it will
only reduce your vulnerability count, not eliminate it entirely. Therefore, modern DevOps security teams have
focused extensively on deploying technologies such as Fastly Next-Gen WAF and RASP that protect their
applications and APIs to gain visibility into attacks in production as a feedback loop to developers. A feedback
loop that works is one that instruments the application runtime and involves developers in security events
as they’re actively happening. This moves application security from a “push” to a “pull” model which is more
effective for developers.

few examples of why security teams need to leverage
proactive web defense that uncovers how attackers
actually try to misuse and abuse your apps in production.

Static code scanning value is shrinking

Static application security testing (SAST) and code
scanning tools provide some value in analyzing source
code for vulnerabilities. Unfortunately, as development
has changed, these tools have not modernized as well.
SAST tools were typically designed for slow waterfall
development where only a few major technologies such
as C/C++ or Java were used.

Ask any technology leader or practitioner and you’ll hear
that the rate of change in software development has
increased dramatically. Compounding the problem for
SAST is that the number of different technologies and
languages now used by any company has risen massively.
To put it all in perspective, SAST was built for a world
where only a few languages were used and applications
and APIs were only updated on the order of months or
years. Flash forward to today and you see all sorts of new
technologies from containers to JavaScript frameworks
in use across the enterprise with development changes
being made hourly, daily, or weekly.	

8The DevOps Roadmap for Security

As the software development and delivery world has
shifted, and SAST — while still an important control — has
declined in value over time, practitioners have focused
their application security efforts in other areas that have
resulted in a better bang for the buck.

Protecting your production applications and APIs

Historically for many organizations, application and API
defense was the domain of the legacy Web Application
Firewall. But legacy WAFs, which required massive
tuning and false-positive maintenance even in the pre-
DevOps era when applications only changed every 6–12
months, have become the opposite of what many modern
DevOps and security teams are looking for. The legacy
WAF problems of only having a data-center-focused
architecture and extensive false positives every time an
application or API changes have meant that for virtually
every organization going through the shift to DevOps
there has become a need for a modern DevOps friendly
way of protecting applications and APIs.

Incidentally, this is exactly why Fastly created a next-
gen WAF. The Fastly Next-Gen WAF is the result of
practitioners at global ecommerce company Etsy, which
was at the forefront of the DevOps shift and needed
a modern way to protect their applications and APIs
against account takeover, credential stuffing, malicious
bots, API abuse, application DDoS, and classic OWASP
Top 10 attacks. Most importantly, they needed this
protection in an architecture that was DevOps friendly,
supporting everything from modern containerized and
serverless environments all the way back to legacy
applications in data centers. The need to protect against
real-world application layer attacks combined with
modern application development processes across new
infrastructure led to the creation of the Fastly Next-Gen
WAF which now protects many of the Fortune 500 and
many DevOps and cloud-forward companies globally.

“But my organization already has a WAF. Why do I need a
new one?” you’re probably wondering.

Let’s be frank for a moment: not all WAFs are created
equal. Many, in fact, are based on antiquated technology

called regular expression pattern matching. They use
static rules to enforce who and who can’t access your
apps and APIs behind the WAF. But there’s a major
problem with legacy WAF appliances: their protection
cannot scale and more importantly, due to the high
false positives regex pattern matching creates, most
organizations operate a legacy WAF in “learning mode” or
monitoring which provides no protection.

Moreover, within the context of multi-cloud and rapid
development cycles and releases, they don’t stand a
chance. With legacy WAFs requiring learning mode and
constant signature tuning to eliminate false positives, the
aggressiveness of a legacy WAF’s blocking rules gets
turned down or completely turned off for fear of breaking
the application.

But with a next-gen WAF solution like Fastly’s, you can get
real visibility into advanced app-layer attacks. A SaaS-
delivered application protection solution that provides
production instrumentation and intelligent, automated
request blocking, the module-agent pair is deployed
quickly and easily across cloud, on-premises, containers
— anywhere modern development and operations teams
run their apps and APIs. With SmartParse, a proprietary
detection method, the Fastly Next-Gen WAF can make
highly accurate, instantaneous decisions in line to
determine if there are malicious or anomalous payloads
present in requests.

Designed to run at scale, a
true next-gen WAF provides
visibility and protection
at the web application
layer without incurring the
maintenance overhead that
legacy WAFs require.

9The DevOps Roadmap for Security

Application security feedback
It’s hard to think about modern approaches to delivering
services without thinking about delivering them over the
web. With the rise of microservices10 and the decoupled
architecture patterns therein, you find an even higher
dependence on web-based REST APIs. Today, most
systems are collections of loosely coupled applications
delivered over the web. This hasn’t been an abrupt
transition but has been an ongoing shift over the last
20 years. But even with a long history of using the web,
we have a dearth of mechanisms for detecting security
problems in real-time.

Many organizations implemented web application
firewalls (WAFs) a decade ago, however rarely has
anyone operationalized them. Most WAFs were put in
place for compliance adherence, namely PCI, and were
generally put in “listening,” or passive mode with no
defensive posture.	

But in the last ten years, we have continued to
see common web application security vectors get
compromised, and the Open Web Application Security
Project (OWASP) continues to issue guidance on the same
threat vectors.11 The problem hasn’t been solved. We are
clearly lacking feedback loops to improve our application
security stance in the face of changing underlying
technology models.

There are two main feedback loops to implement in
application security: divergent patterns and known
attacks. Divergent patterns, or signals, are seen in web
request traffic that attempts to access resources that
don’t exist or result in spikes in traffic from uncommon
sources. Known attacks	
are common OWASP Top 10 items like XSS or injection
attacks. Feedback loops in both areas bring visibility to
an otherwise neglected aspect of our systems.

10The DevOps Roadmap for Security

Usage feedback
Once you have proactive web protection in place, a
feedback loop for security and DevOps teams is created.
You’ll be able to answer questions like:

•	 Are you experiencing a higher volume of logins?

•	 What about password changes?

•	 Have you seen more accounts created in the last
hour than normal?

	
These are all subjective questions that are specific to the
current business state. More than likely, some of these
metrics are already being tracked within your organization,
but aren’t visible throughout. Enterprise security teams,
using the production insights a next-gen WAF provides,
can create feedback loops to check for anomalous
behaviors that are indicators of current or successful
attack signals.

When combined with application security feedback,
usage metrics become more powerful. Often these will
provide clues to how successful the attacks are.

If there’s a spike in XSS attacks, it’s a more powerful
metric when correlated with the number of password
change requests happening in the application.
Instrumenting the common flows for users in your system
and tying them to application security feedback can bring
tremendous value to all sides: development, operations,
security, and most importantly, the business.

Lastly, software engineers never have a shortage of bugs
to fix, but the challenge is understanding which ones to
prioritize. Proactive web defense tooling clear reports
on the most common attack types and targets to help
DevOps and development teams focus on what exactly is
under attack. Engineering and security managers use this
real-time data to best utilize their resources, including
what types of training needs to be reinforced depending
on the attack tactics used against their apps and APIs in
production. Developers and security engineers are able to
use self-service data to get a better understanding of the
bigger picture of attacks against their code — and modify
it to prevent the next attack that could lead to a breach.

Real-time attack and event data are required for application security success. Next-gen WAF technologies,
when properly integrated with a DevOps toolchain, can provide the feedback necessary to make informed
actionable security decisions.

11The DevOps Roadmap for Security

Unite security and
engineering culture
Culture is the foundation of any business function, and
that’s especially true for DevOps. In fact, many of DevOps’
early adopters define it first and foremost as a cultural
movement followed by operational and technology
requirements. The adherence to a culture-first approach
to DevOps was an outcropping of the organizational
divide between development and operations. The
cultural divide was often apparent just by examining an
organizational chart. With staffing ratios of ten developers
to one operations staff, coupled with different chain-of-
command paths, it was easy to pinpoint the source of the
problem. There were also competing priorities between
stability (operations) and features (development). This
tension created silos based on functional roles in many
organizations.

“You can’t directly change culture, but
you can change behavior, and behavior
becomes culture.”

— Lloyd Taylor, VP Infrastructure, Ngmoco

Before DevOps had a name, it was originally referred to as
Agile Infrastructure. Agile was successful at transforming
development practices and behaviors.	
It seems obvious now that if the same Agile principles
were applied to operations, the cultural divide could be
resolved. Due to the close relationship between Agile and
operations, behaviors did start to change. New practices
arose like Scrums, Kanban boards, standups, and planning
poker sessions. These collaboration practices were
evidence of the behaviors that would eventually influence
cultural change.

What culture means to security
If culture is the foundation of DevOps, and solving the
cultural divide is important, shouldn’t security take notice?	

It’s easy for security to identify with the problems
between developers and operations—security faces
similar issues. An average staffing ratio of one hundred
developers to one security engineer illustrates an even
larger divide than that which exists between developers
and operations (1:10 as mentioned above). Alongside
this inequitable distribution of labor, there’s the very real
challenge of differing priorities: speed and features vs.
defense and compliance.

As security makes the cultural transition to DevOps,
security professionals must:

•	 Recognize that if security blocks progress and
speed, it will be ignored and marginalized:	
Building or fostering a culture of gating functions
surrounding security is not a sustainable or
forward-thinking model. Security must get out of
the way of progress in order to survive.

•	 Collaborate across the organizational landscape
and deputize security champions: Enterprise
security can’t be solved by simply hiring additional
resources as there isn’t enough security talent
available to fill the current needs, let alone future
growth. Instead, the most effective security
organizations are discovering ways to deputize
security champions across their organization.13

A normal staffing ratio of developers to security staff.12

100:1

12The DevOps Roadmap for Security

Pragmatic technical changes
It’s often said you don’t fix cultural problems with
technology. Generally, this statement is true, however,
there are some technical changes that can influence
cultural behavior. For security engineers, there are two
practices that impact culture: a Lean Security approach to
eliminate waste and the democratization of security data.

Lean security and eliminating waste

Currently, the entire software security industry is built
on inspections at the end of development through
processes like annual penetration testing or compliance
assessments. This model runs counter to Lean Software
Development practices.14 Using annual cycles and end-
of-cycle inspection is harmful because it creates waste,
delays learning, and slows down overall delivery.

One of the first considerations of a Lean Methodology is
identifying waste and eliminating it from your production.
At RSAC 2016, Ernest Mueller and James Wickett
presented on Lean Security16 and how to identify waste
with security practitioners in mind. Security professionals
should focus their process improvement energy on
lowering or otherwise improving:

•	 Excess inventory: Caused by handing off a
thousand-page PDF of vulnerabilities to an already
busy team, excess inventory can be solved by
prioritization and limiting the Work In Progress
(WIP) queue. Focus on attainable goals that don’t
overwhelm your staff.

•	 Overproduction: Security controls stemming from
fear, uncertainty, and doubt (FUD) — the lingua
franca of security — cause misalignment with actual
business need. Instead, choose to align with actual
needs and eliminate ideas that can’t be solved and
only lead to confusion and FUD.

•	 Extra processing: Relying on compliance testing
cycles as opposed to designing processes to
eliminate problems from inception is a major issue.

Security practitioners must decide to be involved in
the earlier stages of software creation rather than
post-development testing.

•	 Handoffs: Handing problems to others to solve
instead of collaborating and being a part of
the solution limits collaboration and long term
effectiveness. Solve problems together — don’t pass
the buck.

•	 Waiting: Lag time waiting for approvals or analysis
for security fixes impedes the goals of the business.
Create self-service flows by automating security
tooling, thus lowering the impact on development and
operations.

•	 Task switching: Rapid “break-fix” work or hot
patching should be avoided. Security should adapt
to use the current “work intake” processes that the
development team prefers. Whenever security can
operate within the confines of the current operational
model, they should do so.

•	 Inaccurate defects: Both false positives and false
negatives are unimportant findings that often get
reported, resulting in zero-value rework items and
a waste of development and operational resources.
Validate findings before reporting them to the team,
and make sure they are legitimate to streamline
software security improvement.

“Cease dependence on inspection to
achieve quality. Eliminate the need for
inspection on a mass basis by building
quality into the product in the first
place.15”

— W. Edwards Deming

The DevOps Roadmap for Security

The process of finding waste and eliminating it in your
system will increase productivity and boost culture.
Shifting security engineering efforts earlier	
in development is not just about the removal of waste—it
has plenty of cultural benefits as well. Making gains both
on your culture and your productivity will give your teams
a one-two punch of security improvement.

Democratization of security data

The rise of DevOps has spurred other sub-movements,
one being ChatOps. ChatOps is the practice of integrating
your monitoring, logging, and other operational tasks into
the team communication medium. Many organizations
achieve ChatOps goals via Internet Relay Chat (IRC) or
other chat client systems like Slack. Almost every piece
of tooling you use integrates in some way — from code
deploys to monitoring to new customer signups — with
the leading technologies in the ChatOps space.

Lean software development
practices

•	 Eliminate waste

•	 Amplify learning

•	 Decide as late as possible

•	 Deliver as fast as possible

•	 Empower the team

•	 Build integrity in

•	 See the whole

From a security vantage point, many teams have
benefited from integrating their security tooling into their
development and operational ChatOps efforts. Security
and ChatOps integration takes the siloed knowledge of
where attacks are happening and distributes it across the
organization, opening up major lines of communication.
This enables all security stakeholders to make decisions
and draw conclusions from the same baseline level of
security data. As you might have guessed, security plus
ChatOps has changed the way security is perceived in
many enterprise organizations by quickly turning the
ChatOps concept into a security-centered cultural win.

At Fastly, we distribute security events
to the entire team through methods
that encourage collaboration. Many of
our customers integrate with Slack
and alerting products like OpsGenie,
VictorOps, and PagerDuty.

13

14The DevOps Roadmap for Security

Delivery cadence
Continuous Integration and Continuous Delivery (often
referred to collectively as CI/CD) are not wholly new
concepts but growth and adoption are on the rise. The
focus on delivering software rapidly is influenced by
the rapid growth of DevOps and, in many ways, the
delivery cadence of an organization is an indicator of
how successful your organization has been at adopting
DevOps. This doesn’t mean that faster is always better.
Success is better measured by reducing Mean Time
Between Delivery (MTBD) for your organization. Moving
from monthly to weekly to daily delivery is a journey —
and it’s a journey worth making.

Why is delivery cadence important?
In the ’90s and throughout the early 2000s, most of
IT followed a waterfall model for delivering software.
Software spent the majority of its time in architecture
and design, and only towards the end of development
did it actually come together to function. The window for
design and development could easily have been six to
twelve months or longer, with the last month being the
integration phase where it was all connected and run
together to be tested as one final unit. In many cases, this
would be the first time the software would come together
to function as a whole.

The theory behind waterfall development is that if all
the requirements were gathered first to specify all the
development tasks upfront, then at the end it would
produce the correct result—within budget and on time.
Effectively, all changes are batched together into a
release in the latter stages of the software engineering
effort. Since delivering a batch of changes is quite an
undertaking, it’s untenable to do it that often. This causes
releases to happen as slow as twice a year or, worse,
once every twelve months in many organizations. Since
releases are so infrequent, waterfall also encourages
stuffing as many changes as you could fit into each
individual release so you don’t have to wait for the next
release that may be months away.

Many believed that waterfall would result in less rework
due to upfront specificity, increased stability, and security
since all changes would be made in large batches. Today,
the industry has realized this type of thinking is incorrect.

If your organization needed
to, could it deploy to
production on demand in
order to address a critical
security vulnerability?

This is a key question the State of DevOps 2019 report
focused on. As the sophistication level of integrating
security throughout an organization increases, they gain
the ability to deploy on demand and thus deliver features
to customers faster and thus accelerate the cycle from
concept to cash.17 In addition, security gets better from
faster delivery, not worse. Still, most organizations still
require anywhere from one day to one week to remediate
critical vulnerabilities.18

Two key tools that need to be in place to influence
enhanced delivery cadence:

•	 Using a CI system like Jenkins, or a service like
TravisCI or CircleCI that runs tests and creates
artifacts that can move on to the next stage in the
delivery pipeline.

•	 A deployment system with minimal gates that
handles orchestration.	

CI/CD systems are available as a service with two great
options as the market leaders: TravisCI and CircleCI.

15The DevOps Roadmap for Security

Three common practices
with security implications
There exists an excellent book titled Continuous Delivery
by Jez Humble and David Farley that is the comprehensive
and definitive work on the subject. This book defines three
specific practices that improve security:

1.	 Smaller changes are easier to rationalize

One of the benefits of having a higher frequency
of deployments is that you will also have fewer
changes going out each time. This makes each
deployment simpler and easier to rationalize
as well as giving security the ability to isolate
changes made to the more sensitive portions of
the codebase.

2.	 Automated testing

Continuous Delivery pipelines hinge on automated
testing. Each commit, no matter how small, goes
through the same testing before getting released
to a preproduction environment and ultimately to
production. This is a good thing — and security
can take advantage of this playing field by adding
static and dynamic security tooling (SAST and
DAST respectively) to the pipeline.

3.	 Assurance and confidence in changes

One of the core tenets of Continuous Delivery
is that the artifacts (the outcome of a build) are
only built once, and as much as possible, are
immutable. Continuous Delivery tracks the artifact
to a repository, through completion of testing, to
production deployment. This practice increases
confidence and assures the security team that
there’s an audit chain for changes.

Treat everything as code
The last area to explore where security fits into DevOps
is treating everything as code (also called “Infrastructure
as Code”). It might seem odd to you that this was left until
the end.	

This was intentional because it’s often the first thing
thought of when joining DevOps and Security, but by
putting the other items first, the hope is to draw attention
to the more neglected areas of DevOps.

Infrastructure as Code is the complete codification
of the system from networking and routing to system
configuration to all the acceptance and smoke tests.
Everything that’s needed to create, run, test, change,
monitor, secure, and destroy infrastructure, and the
system as a whole, is expressed in code. During the
early days of DevOps, this was the force du jour of the
movement. Operations engineers moved from storing
configs and scripts in shared drives and wikis to actually
using version control and building complete automation of
their systems.

As DevOps grew, so did our understanding of
Infrastructure as Code. The broader goals of
Infrastructure as Code have security implications:

•	 Version controlled artifacts that describe the
system and all its components. This keeps
configuration out of wikis and documents and in a
versionable, referenceable state.

•	 Configuration management of the system in
running state. Configuration and runtime state
tracking replaces a configuration management
database (CMDB).

•	 Testing as a first-order priority with test-driven
development (TDD) and integration testing
as common practices. Tests are written for
infrastructure code as well as application code while
under development. Writing tests while creating
your infrastructure both asserts desired state as
well as provides a test suite for CI/CD efforts.

•	 Facilitating distributed computing and scaling.
Without treating infrastructure as code, scaling is
difficult and distributed computing (cloud) becomes
almost untenable. Seeing distributed computing
and scaling as desired outcomes guides the
development practices.

16The DevOps Roadmap for Security

•	 Configuration management of the system in
running state. Configuration and runtime state
tracking replaces a configuration management
database (CMDB).

•	 Understanding your software supply chain.
Software is not merely the hundreds or thousands
of lines of code that are written by developers. It’s
composed of much more, from dependencies to the
OS to the virtualization framework. Infrastructure
as Code encourages software supply chain
management by introducing specificity and an
auditable log for the actual runtime of the system.	

Some practical artifacts of adopting Infrastructure as
Code include Dockerfiles, Terraform Plans, or Chef
cookbooks. The use of such artifacts will change based
on the underlying infrastructure shifts from bare metal
to virtual machines, to public cloud services, and now
to containers and serverless patterns. No matter what
types of infrastructure you’re using, whether Amazon Web
Services (AWS) EC2, Kubernetes, or Azure Functions, we
see each of these broader goals of Infrastructure as Code
in practice. We will take each of these goals in turn and
evaluate where security fits in.

Version controlled artifacts
Having version controlled artifacts is one of the first steps
to doing Infrastructure as Code. These artifacts bring in
the core functions of auditability and change control to
the operational process.

Version controlled artifacts include version controlling all
of the configuration management code but also creation
scripts and image packaging code.

There are often other pieces of the infrastructure that
need to be added that can’t operate as readable artifacts.
These are components like SSL wildcard certs, license
files, or passwords and often will be version controlled
but only in encrypted binary form.

In Gene Kim’s book on the topic of change control, 	
Visible Ops Security, Kim demonstrates a direct cause and
effect relationship between the ability to detect change in
security components and the success of security initiatives.
With operations moving into version control, just like in
development, the security team now has a foothold and
view into the entire system. This visibility encourages
change control with alerting of changes to critical
components and auditability that was never available
previously.

Configuration management
Configuration management expresses the configuration
of the running system in code. Convergence and
idempotency are the two core concepts behind
configuration management.

•	 Convergence assures that the infrastructure will
reach its desired state through the configuration
management system.

•	 Idempotency guarantees that a command can be
run over and over with the same results. Because
configuration management has both of these
attributes, there can be better reasoning around	
the system.	

“Security is joining forces with
DevOps and this paper shows you
how to get started with common
principles and practices to effectively
integrate security in your DevOps
transition, written by some of the best
in the game.”

— Gene Kim, co-author of The Phoenix Project
and The DevOps Handbook

17The DevOps Roadmap for Security

From a security team’s perspective, there are two key
benefits to configuration management. First, configuration
becomes accessible in an easy-to-read, federated format
which simplifies auditing and gives security insight into
how the systems are built, complete with logs. The second
benefit is compliance and adherence to policy. Policy
enforcement is a fundamental function of a successful
security team. Configuration management allows security
teams to reach their goals in an automated fashion.

The majority of configuration management systems have
built-in functionality to run in validation mode rather
than to attempt convergence. Running configuration
management in validation mode allows verification of
the system on a daily (or more frequent) basis, ensuring
deviations from compliance standards are kept in check.
The popular configuration management system Chef
provides this exact benefit via Inspec, an open-source
testing framework for specifying compliance and policy
requirements.19 Inspec provides a huge advantage by
creating daily reports of runtime drift out of compliance or
even more importantly, identifying new exposure areas.

Testing
There are two main types of testing relevant to
infrastructure as code: test-driven development and
integration testing. Test-driven development means that
the developer writes tests alongside the development of
the application or, in the case of Infrastructure as Code,
the infrastructure. There are numerous benefits, but one
of the key improvements is the creation of a functional
test suite that can be used with CI/CD efforts.

The second type is integration testing. This is an	
outside-in approach of asserting that the infrastructure
and system meet the requirements set forth at the time	
of design.

Tools like Serverspec, KitchenCI, or Robot Framework
are often used to do this layer of testing. It’s tempting
to think that integration testing is done at a later stage
in the software development lifecycle, but there’s a
growing trend of shifting this testing “left,” or earlier in the
development and delivery pipeline.20

The O’Reilly book, Agile Application Security, states,
“The goal should be to come up with a set of automated
tests that probe and check security configurations and
runtime system behavior for security features that will
execute every time the system is built and every time it is
deployed.” This means that security testing is not treated
differently from the other types of testing.

In fact, the industry is continuing to move security testing
further left in the pipeline using tooling like Gauntlt.21	
With these security-centric testing frameworks, you	
gain the ability to specify the security standards all
software should meet. For example, “our website
should not fail a scan for XSS,” or, “when not logged
in you should not be able access certain resources.”
Once the definition of the requirement is set, you can
implement automated integration testing and test driven
development to ensure success.

Cloud and distributed computing
In today’s world, we often find ourselves running our
systems on third-party providers like AWS, Microsoft
Azure, or Google App Engine. Running in these cloud
providers changes how we think about security incidents
and lateral movement. Cloud computing changes our
threat landscape. Attackers are less likely to gain a
foothold by pivoting across your systems through network
segments, but instead will attack your cloud provider’s
configuration and seek to open holes in that environment.

One key challenging that most enterprise security
departments have is that they’re not prepared to deal
with the cloud landscape. In fact, industry experts have
dubbed it a “black hole” due to the disconnect that they
often feel.22

To deal with this, cloud providers like AWS provide
a complete audit log called CloudTrail which logs all
changes to every single configuration in your cloud
architecture. Meanwhile, auditing monitors all system
commands run on the hosts. Combining these two vectors
of logging and auditing provides a clearer picture to
changes happening throughout the environment.

The DevOps Roadmap for Security

Software supply chain
Software is not merely the hundreds or thousands of lines
of code that are written by developers. In reality, software
is composed of much more, from individual dependencies,
to the operating system, to the virtualization framework.

Unfortunately, the software we build inherits
vulnerabilities from the entire codebase — including code
we didn’t write.

Infrastructure as Code encourages software supply chain
management by introducing specificity and an auditable
log for the actual runtime of the system. Software supply
chain is a difficult problem to solve due to the nature of
code reuse, and knowing what code is shipping through a
software bill of materials (software BOM) is an important
task for both engineering and security. Knowing what is
in your current runtime down to the specific version is
critical, including all code libraries as well as sub libraries
that your inclusions use.

A solution like Sonatype can be
immensely helpful to understand your
software BOM.

Following the roadmap
The DevOps Roadmap for Security was written to help
provide guidance to security practitioners preparing for,
or currently experiencing the transition to, DevOps and
secure DevOps in their organizations. This is no small
task — uniting the DevOps and security teams radically
changes any company’s culture.	
Now that you have the roadmap and understand the four
areas to focus on, it’s time to follow the roadmap.

The first edition of the Roadmap put feedback loops as
the last area, but in this edition it was moved to the first
area to explore. This was in part a reaction to the security
industry’s belief that secure DevOps is all about shifting
left — moving security testing closer to development.	
This is a worthy pursuit. However, no matter how much
testing is put in place, there needs to be a focus on
instrumenting the runtime environment and creating
feedback loops. When are you under attack? Are the
attackers finding success? These are questions that no
amount of “shifting left” could ever answer.

We suggest that you follow all of the Roadmap. But if
you’re just getting started, beginning by creating security
feedback loops is usually the best place. This puts
security instrumentation in your production applications
and creates feedback to developers, operations, and
security. Adding this level of instrumentation with
Signal Sciences can support faster development cycles,
and serves to change the perception of security in an
organization from the “inhibitor to innovation” to an
accelerator of innovation. Using the secure DevOps
practices discussed in the Roadmap, there’s a real
chance for security to add value to the organizations
they’re protecting.

18

One company taking this
approach is ThreatStack.
They actively look for
changes with security
implications both at the
host and the cloud provider
configuration layer.

Endnotes
1	 Agile Application Security - Laura Bell, Jim Bird, Rich Smith, Michael Brunton-Spall,
O’Reilly Media, Inc., September 2017.

2	 Thinking Security - Steven Bellovin

3	 theagileadmin.com/what-is-devops/

4	 The State of DevOps 2019 - https://puppet.com/resources/report/state-of-devops-
report/

5	 CA Research Report: DevOps: The Worst-Kept Secret to Winning in the Application
Economy

6	 amazon.com/Leading-Transformation-Applying-DevOps- Principles/dp/1942788010

7	 The DevSecOps Community Survey 2020 - https://www.sonatype.com/hubfs/
DevSecOps%20Survey/2020/DSO_Community_Survey_2020_Final_4.1.20.pdf

8	 medium.com/@aneel/theory-in-practice-ooda-mappingantifragility-df7f03a36a9c

9	 theleanstartup.com/principles

10	 Sam Newman rocked the industry with his recently released book on Microservices.
samnewman.io/books/building_ microservices/

11	 The OWASP Top 10 is largely unchanged since 2004 even though the list has been
refreshed and updated with new data every three years. owasp.org/index.php/
Category:OWASP_Top_ Ten_Project

12	 Ibid

13	 https://www.signalsciences.com/blog/more-silo-smashing-ideas-bringing-infosec-
and-devops-together/

14	 Lean Software Development practices were created by Mary and Tom Poppendieck in
their book Lean Software Development: An Agile Toolkit (2003)

15	 deming.org/explore/fourteen-points	
Deming, W. Edwards. Out of The Crisis (MIT Press) (pp. 23-24)

16	 slideshare.net/mxyzplk/lean-security-rsa-2016

17	 The State of DevOps 2019

18	 Ibid.

19	 chef.io/inspec/

20	 en.wikipedia.org/wiki/Shift_left_testing

21	 gauntlt.org

22	 computerweekly.com/news/450300208/DevOps-a-black-hole- for-security

Document title 19

The DevOps Roadmap for Security

Protect your apps and APIs
everywhere from a single
solution
We make web applications more secure. Simple as that.
We provide web protection that security, operations, and
engineering teams actually want to use.	
Learn more at Fastly.com

•	 Protection everywhere your apps operate	
Fastly’s next-gen WAF flexibly deploys in any
environment and can protect apps and APIs
wherever they are—in containers, on-prem, in the
cloud, or on the edge—with one integrated solution.

•	 See real threats, not false positives 	
Over 90% of our customers have our WAF in full
blocking mode. We take a threshold approach
to blocking so you can run our solution in full,
automated blocking mode in production with
virtually no false positives. This enables you
to scale protection without dealing with the
maintenance overhead that legacy WAFs require.

•	 Defeat advanced threats	
Get protection that goes beyond OWASP Top 10
injection-style web attacks. We provide coverage
against advanced threats including account
takeover (ATO) via credential stuffing, malicious
bots, API abuse and more—all in one solution.

•	 Fast time-to-value	
Unlike traditional web application firewalls, our
next-gen WAF deploys in an average of 60 minutes
and you won’t pay extra managed services fees for
rules tuning or ongoing maintenance.

20

https://www.fastly.com/

21The DevOps Roadmap for Security

Reliable, automated blocking

•	 Runs directly in your web servers or application code

•	 Fail-open architecture keeps your site running fast

•	 Proprietary SmartParse detection requires no
tuning or maintenance

Focused on DevOps

•	 Easily deployed by operations teams

•	 Cross-team visibility into metrics, performance	
and trends

•	 Integrated into toolchains for quick access and
collaboration

Any platform, one UI

•	 Functions anywhere: in containers, on-prem, or in	
the cloud

•	 One unified view across your entire footprint

•	 Protects and monitors both internal and	
external services

Coverage against all threats

•	 Immediate blocking of common OWASP attacks

•	 Meets PCI 6.6 compliance requirements, but
doesn’t stop there

•	 Blocks account takeovers, bad bots, application
denial of service, and more

