
Guide

Whitepaper

Elevating Kubernetes
Security at Fastly

2Elevating Kubernetes Security at Fastly

Table of Contents
03	 Introduction

04	 The	Problem:	A	Complex	and	Expanding	Threat	Landscape

05	 Our	Solution:	The	Elevation	Ecosystem	

06	 Our	Guiding	Principles

07	 Threat	Modeling	for	Kubernetes
07	 Identifying	Threat	Actors	and	Vectors

09	 Think	Like	an	Attacker:	Understanding	the	Kubernetes	Kill	Chain

10	 The	Kubernetes	Attack	Lifecycle:	From	Initial	Access	to	Impact

16	 Securing	the	Kubernetes	Software	Supply	Chain:		
		 Images,	Builds,	and	Deployment	Pipelines
16	 Why	Supply	Chain	Security	Matters

20	 Kubernetes	Network	Security	–	Segmentation	and	Traffic	Control
20	 The	Basics	of	Kubernetes	Networking

21	 Network	Policies	–	Kubernetes	Firewall

22	 Implementing	Network	Policies	–	Best	Practices

23	 Beyond	NetworkPolicy:	Advanced	Traffic	Control

24	 Hardening	Kubernetes	Access:	Authentication,	Authorization,	and	Service	Identity
24	 Kubernetes	Authentication	Basics

25	 Role-Based	Access	Control	(RBAC)

27	 Protecting	the	API	Server	Endpoint

28	 Service	Mesh	Security	–	Enforcing	Zero	Trust	for	Workloads

29	 Workload	Security	–	Hardening	Pods	and	Containers
29	 Pod	Security	Standards	and	Policies

30	 Container	Privileges	and	Linux	Capabilities

31	 Filesystem	and	Device	Permissions

32	 Seccomp,	AppArmor,	and	SELinux

33	 Implementing	and	Verifying	Workload	Security	Settings

34	 Monitoring	and	Threat	Detection	in	Kubernetes
34	 Centralized	Logging	and	Monitoring

35	 Runtime	Threat	Detection	with	Falco

36	 Tying	it	Together	with	Compliance

36	 Conclusion

2

3Elevating Kubernetes Security at Fastly

Introduction
Imagine	waking	up	to	find	that	your	company’s	entire	operation	has	ground	to	a	halt	because	an	
attacker	found	a	backdoor	into	your	Kubernetes	clusters.	The	chaos,	the	downtime,	the	potential	
loss	of	customer	trust	—	it’s	a	nightmare	scenario	for	any	organization.	Now,	picture	a	world	where	
such	threats	remain	just	that:	a	nightmare.	At	Fastly,	we	have	implemented	a	fortified	security	
strategy	to	anticipate	and	mitigate	risks	effectively.

As	we	modernized	and	scaled	our	application	platforms	with	Kubernetes,	security	became	the	
foundation	of	our	design.	Kubernetes’	immense	power	comes	with	its	own	set	of	challenges,	
requiring	a	structured,	proactive	approach.	As	the	Senior	Principal	Security	Architect,	I’ve	
collaborated	with	our	Cloud	and	Container	Services	team	to	elevate	the	security	and	compliance	
posture	of	Fastly’s	Kubernetes	ecosystem.

This	article	explores	Fastly’s	security	strategy	and	best	practices,	which	form	the	foundation	of	
Elevation-Fastly’s	Kubernetes	Ecosystem,	and	delves	into	the	Kubernetes	threat	landscape.	We	
discuss	threat	modeling,	image	security,	network	security	and	AuthZ/AuthN	in	Kubernetes,	and	our	
approach	to	these.	

About the Author
Roshan	Daneshvaran	has	a	diverse	work	experience	in	the	field	of	
cybersecurity	and	information	technology.	Roshan	is	the	founder	of	
Microstack,	a	company	that	provides	strategic	guidance	and	technical	
expertise	to	enhance	clients’	Cloud	and	Kubernetes	posture	and	cybersecurity	
resilience.	Roshan	prioritizes	security	and	compliance	across	all	services	and	
aims	to	modernize	applications	and	infrastructure.

Roshan	currently	holds	the	position	of	Senior	Principal	Security	Architect	
at	Fastly,	leading	high-impact	projects	to	secure	cloud,	platform,	and	
container	environments.

4Elevating Kubernetes Security at Fastly

The Problem:
A Complex and Expanding
Threat Landscape

Kubernetes	has	become	the	backbone	of	modern	cloud-native	architectures,	providing	unmatched	
flexibility	and	scalability	in	managing	containerized	applications.	However,	this	widespread	
adoption	also	makes	it	a	prime	target	for	attackers.	With	Kubernetes	adoption	reaching	60%	
among	enterprises,	and	up	to	96%	among	respondents	in	CNCF	surveys	(CNCF),	its	APIs,	ingress	
controllers,	and	service	endpoints	create	multiple	entry	points	for	exploitation.

As	Kubernetes	continues	to	evolve,	so	do	the	tactics	of	malicious	actors.	Organizations	must	
embed	security	best	practices	such	as	strong	access	controls,	continuous	vulnerability	scanning,	
and	real-time	monitoring	at	every	stage.	At	Fastly,	we	recognized	these	challenges	and	took	
decisive	steps	to	ensure	our	Kubernetes	infrastructure	is	resilient	and	secure.

5Elevating Kubernetes Security at Fastly

Our Solution:
The Elevation Ecosystem

At	Fastly,	we	see	security	not	as	an	obstacle	but	as	an	enabler.	By	embedding	security	into	
the	very	fabric	of	our	development	process,	we	ensure	that	it	serves	as	a	productive	ally.	
Through	clear,	“guardrailed”	pathways,	developers	are	empowered	to	focus	on	building	amazing	
applications,	free	from	the	burdens	of	complex	security	requirements.

We	have	established	a	secure	Kubernetes	environment	called	Elevation,	built	on	open-source	
and	CNCF	products,	providing	a	robust	foundation	for	both	our	critical	control	plane	and	internal	
systems.		By	balancing	innovation	and	resilience	through	a	proactive,	developer-centric	approach	
to	security,		Elevation	empowers	application	teams	to	innovate	without	the	constraints	and	
complexities	of	managing	infrastructure.		Our	robust	security	strategy	effectively	addresses	the	
unique	challenges	of	Kubernetes,	ensuring	Elevation’s	resilience	against	emerging	threats.

6Elevating Kubernetes Security at Fastly

Our Guiding Principles

1.	 Proactive Security: Catch Issues Early, Reduce Costs

Security	is	most	effective—and	cost-efficient—when	addressed	early	in	the	software	
development	lifecycle.	At	Fastly,	security	is	embedded	from	the	start,	ensuring	vulnerabilities	
and	misconfigurations	are	caught	before	they	become	costly	problems	in	production.	
By	integrating	security	into	CI/CD	pipelines,	we	stay	ahead	of	threats	rather	than	reacting	to	them.	
Automated	vulnerability	scans,	compliance	checks,	and	policy	enforcement	ensure	that	every	
container	image	and	deployment	meets	rigorous	security	standards.	This	approach	minimizes	risk	
while	maintaining	the	speed	and	agility	developers	need	to	innovate.	Security	isn’t	a	blocker—it’s	an	
accelerator,	enabling	confident	and	secure	development	from	day	one.

2.	 Guardrails Over Tollgates: The Secure Path is the Easy Path

We	make	the	secure	way	the	easy	way	by	providing	automated,	compliant,	and	opinionated	workflows	
that	seamlessly	integrate	security	into	development.	These	guardrails	act	as	predefined	pathways,	
ensuring	security	best	practices	are	enforced	without	friction.	
Unlike	traditional	tollgates—manual	checkpoints	that	slow	progress—our	approach	automates	security	
checks	and	policy	enforcement	throughout	the	entire	development	and	deployment	process.	This	
creates	a	seamless	experience	where	developers	focus	on	building,	while	security	is	naturally	woven	
into	their	workflows.	Innovation	and	security	are	not	at	odds—they	work	together.

3.	 Platform Engineering: Enabling Developers, Securing Infrastructure

We	embrace	Platform	Engineering	to	remove	the	burden	of	infrastructure	and	security	from	
developers,	allowing	them	to	focus	on	building	and	shipping	great	products.	The	Platform	teams	
manage	foundational	infrastructure—VMs,	container	registries,	Kubernetes	infrastructure,	CICD	
&	observability	systems,	and	security	tooling—ensuring	it	remains	resilient,	scalable,	and	
patched	regularly.	
By	clearly	separating	duties,	we	provide	engineers	with	a	reliable,	self-service internal developer	
platform	that	abstracts	complexity	while	enforcing	security	best	practices.	

Elevating Kubernetes Security at Fastly 7

Threat Modeling
for Kubernetes

In	any	security	journey,	it’s	important	to	know	your	enemy	and	the	battlefield.	Threat	modeling	
is	the	practice	of	identifying	potential	threats,	attack	vectors,	and	vulnerable	points	in	a	system	
before	an	attack	happens.	We	will	outline	the	threat	landscape	for	Kubernetes	and	examine	the	
sequence	of	steps	an	attacker	might	take	to	breach	a	cluster.	By	understanding	how	an	attack	
might	progress,	we	can	better	plan	defenses	at	each	step.

Identifying Threat Actors and Vectors
Who	might	want	to	attack	a	Kubernetes	cluster	and	why?

• Malicious external attackers:	These	could	be	cybercriminals	looking	to	steal	data,	hijack	
computing	resources	(for	crypto	mining),	or	disrupt	services	for	ransom	or	political	motives.	
They	typically	start	with	no	access	and	try	to	find	a	way	in	from	the	outside.

• Insider threats:	A	rogue	or	careless	insider	(a	developer,	admin,	or	even	someone	at	your	
cloud	provider)	could	misuse	their	access.	This	might	not	always	be	intentional	malice	–	
sometimes	insiders	accidentally	expose	credentials	or	misconfigure	systems	–	but	insider	
access	can	bypass	many	external	protections.

• Supply chain attackers: These	target	the	components	that	you	use	to	build	or	run	your	
cluster	–	for	example,	inserting	malicious	code	into	a	container	image	or	open-source	library,	
or	compromising	a	CI/CD	pipeline	to	push	vulnerable	deployments.	In	a	Kubernetes	context,	

The	following	section	of	this	article	outline	our	best	practices	for	building	and	securing	a	Kubernetes	
environment,	and	details	our	approach	to	designing	Elevation	Security’s	core	components.

8Elevating Kubernetes Security at Fastly

a	supply	chain	attack	might	involve	a	tainted	Docker	image	or	a	malicious	Helm	chart	that	an	
organization	unknowingly	deploys.	

Kubernetes,	being	a	complex	system,	has	a	broad	attack	surface:

• Application-level vulnerabilities:	The	apps	running	in	your	containers	might	have	bugs	that	
can	be	exploited	(just	as	in	traditional	servers).	For	instance,	a	vulnerable	web	application	
could	give	
an	attacker	a	foothold	inside	a	container

• Container and runtime vulnerabilities:	The	container	itself	or	the	runtime	(Docker,	etc.)	
might	have	weaknesses	(like	the	infamous	runC	vulnerability	that	allowed	container	escape).	
A	container	running	as	root	or	with	excessive	privileges	is	especially	risky,	as	it	might	allow	
an	attacker	to	break	out	to	the	host.

• Misconfigurations: Perhaps	the	most	common	threat.	Kubernetes	configuration	is	powerful,	
but	mistakes	happen	–	e.g.,	leaving	the	
Kubernetes	Dashboard	open	with	no	password,	setting	overly	broad	permissions	in	RBAC,	
using	default	credentials	for	some	service,	or	not	restricting	public	network	access	to	the	
control	plane.	Attackers	often	scan	for	clusters	with	
such	misconfigurations	because	they	are	low-hanging	fruit.

• Credential compromise:	If	attackers	obtain	credentials	(cloud	API	keys,	kubeconfig	files,	
Docker	registry	passwords,	etc.),	they	may	authenticate	as	a	legitimate	user.	This	could	
happen	via	phishing,	reading	credentials	left	in	code	repositories,	or	exploiting	a	pod	that	has	
access	to	sensitive	credentials.

• Denial of service (DoS):	Attackers	might	aim	to	crash	your	cluster	or	apps,	e.g.,	by	
exhausting	resources.	This	could	be	done	by	exploiting	a	weakness	to	cause	a	memory	leak,	
or	simply	by	spamming	your	API	server	with	requests.	Kubernetes	adds	resiliency,	but	also	
some	new	DoS	angles	(like	spawning	excessive	pods	if	an	attacker	can	trick	the	system).

• Underlying infrastructure:	Don’t	forget,	Kubernetes	ultimately	runs	on	VMs	or	physical	hosts.	
If	an	attacker	can	compromise	the	underlying	host	(through	a	cloud	vulnerability	or	insecure	
SSH,	etc.),	they	can	subvert	the	cluster	from	beneath.	Similarly,	attacks	on	the	network	or	
storage	layers	(DNS,	load	balancers,	etc.)	can	impact	Kubernetes.	

These	threat	vectors	often	chain	together	in	an	attack.

9Elevating Kubernetes Security at Fastly

Think Like an Attacker:
Understanding the
Kubernetes Kill Chain

Let’s	step	into	the	mindset	of	an	attacker.	Defenders	often	think	in	terms	of	controls,	policies,	and	
configurations,	but	attackers	see	an	interconnected	system—one	where	a	single	weakness	can	
lead	to	a	full-blown	compromise.

The	diagram	below	outlines	a	realistic	Kubernetes	attack	scenario,	showing	how	an	attacker	moves	
from	an	initial	foothold	to	achieving	persistence,	lateral	movement,	data	theft,	and	eventually,	
operational	disruption.	By	understanding	these	tactics,	we	can	better	design	defenses	that	don’t	
just	react	but	anticipate	attacker	behaviors.

At	a	high	level,	an	attacker	starts	by	exploiting	a	weakness—often	a	misconfigured	or	
vulnerable	public-facing	service.	From	there,	they	escalate	privileges,	disable	security	controls,	
steal	credentials,	and	move	laterally	across	the	cluster.	The	goal	is	to	extract	valuable	data	or	
disrupt	operations,	often	by	targeting	persistent	storage,	which	can	be	catastrophic	in	cloud-
native	environments.

10Elevating Kubernetes Security at Fastly

Looking	at	this	attack	tree,	we	can	identify	key	inflection	points	where	defenders	have	
opportunities	to	detect	and	mitigate	threats.	Whether	it’s	hardening	ingress	points,	securing	
secrets,	or	enforcing	network	policies,	thinking	like	an	attacker	allows	us	to	strengthen	Kubernetes	
security	in	a	methodical	way.

As	we	progress	through	this	article,	we’ll	map	these	adversarial	techniques	to	structured	security	
framework	MITRE ATT&CK	and	explore	how	to	systematically	defend	against	them.	By	the	end,	you	
should	not	only	recognize	these	attack	patterns	but	also	be	able	to	construct	similar	attack	trees,	
applying	this	mindset	to	assess	and	fortify	your	Kubernetes	environments.

The Kubernetes Attack Lifecycle: From Initial Access
to Impact
Let’s	break	down	a	typical	Kubernetes	attack	into	stages,	from	an	attacker’s	perspective,	based	on	
the	MITRE	ATT&CK	framework,	which	also	serves	as	the	basis	for	our	Threat	Modeling	and	Strategy	
in	securing	Elevation.	Not	every	attack	will	follow	this	exact	order,	but	these	stages	are	commonly	
observed	in	successful	compromises.	We	will	also	briefly	note	what	defenders	can	do	at	each	
stage.

1.	 Reconnaissance: The	attacker	collects	information	about	the	target.	In	the	context	of	
Kubernetes,	this	may	involve	scanning	the	internet	or	the	target’s	network	for	open	ports	
that	signify	the	presence	of	a	Kubernetes	component.	In	more	advanced	scenarios,	
social	engineering	tactics	may	be	employed.	Here	are	some	typical	methods	used	for	
reconnaissance:

• Port Scanning: The	attacker	scans	the	internet	or	internal	network	for	open	Kubernetes	
components,	such	
as	an	exposed	API	server,	etcd	database,	or	dashboard	UI.

• Credential Hunting:	Searching	for	leaked	kubeconfig	files,	credentials	in	GitHub	
repositories,	or	other	misconfigurations	that	could	expose	Kubernetes	secrets.

• Social Engineering:	Gathering	intelligence	from	social	media,	conference	talks,	or	public	
documentation	to	infer	Kubernetes	architecture	and	potential	weaknesses.	

Defender’s angle:	Reduce your public footprint. Don’t expose the Kubernetes API to the
internet unless necessary (use VPNs or trusted IPs), avoid default ports when possible, and
monitor for scanning activity. Use tools like kube-hunter in a controlled manner to see what
an attacker might find during recon.

11Elevating Kubernetes Security at Fastly

2.	 Initial Access: This	is	where	the	attacker	actually	gains	a	foothold.	It	could	happen	in	many	
ways.	They	may	employ	a	combination	of	the	following	techniques	for	getting	an	entry	point:	

• Application Exploit: Gaining	access	via	an	insecure	containerized	application	(e.g.,	
exploiting	a	web	app	vulnerability	to	execute	code	in	a	pod).

• Kubernetes Component Exploit: Taking	advantage	of	a	known	vulnerability	in	the	
Kubernetes	API	server,	kubelet,	or	other	cluster	components.

• Misconfiguration Abuse:	Exploiting	weak	security	settings,	such	as	an	unprotected	
Kubernetes	Dashboard	or	overly	permissive	RoleBindings.

• Stolen Credentials: Using	compromised	kubeconfig	files	or	leaked	service	account	
tokens	to	authenticate	to	the	cluster.	

Once	they	have	some	access	–	say,	the	ability	to	execute	commands	in	one	container,	or	
access	to	the	API	with	limited	rights	–	the	kill	chain	has	begun	in	earnest.

Defender’s angle:	Apply strong perimeter defenses and hardening. This means keeping
Kubernetes updated (to fix known vulnerabilities), eliminating easy misconfigurations, and
using authentication everywhere. Also, minimal privileges: if an attacker lands in a frontend
web server container, that container should not have credentials or high privileges that
allow more damage easily.

Defender’s angle:	This is where runtime security tools come in. Technologies like
Falco (an open source runtime security tool) can detect suspicious behavior (e.g., a shell
spawning inside a container that normally doesn’t use one, or unusual file access patterns).
Network monitoring might catch connections from a pod to an unknown external server
(for C2 communication). Admission controllers can also prevent execution of unapproved
workloads (e.g., don’t allow an untrusted image to be run, which could stop some
malicious deployments).

3.	 Execution:	If	the	initial	access	didn’t	already	execute	code	(e.g.,	if	they	got	credentials,	now	
they	use	them	to	run	some	malicious	workload),	this	stage	is	about	the	attacker	running	their	
code	or	commands	inside	the	cluster.	For	instance,	after	getting	into	a	container,	they	might	
run	a	reverse	shell	to	start	controlling	it	interactively,	or	they	might	drop	a	malicious	binary	
(like	a	crypto	miner)	to	run	inside	the	pod.	If	they	have	API	access,	they	might	deploy	a	new	
pod	(perhaps	a	privileged	one)	to	do	their	bidding.Application	Exploit:	Gaining	access	via	an	
insecure	containerized	application	(e.g.,	exploiting	a	web	app	vulnerability	to	execute	code	in	
a	pod).

• Running Malicious Commands: Executing	shell	commands	within	a	compromised	pod	to	
gain	further	control.

• Deploying Malicious Workloads: Creating	rogue	deployments,	DaemonSets,	or	CronJobs	
to	execute	attacker-controlled	code	persistently.

• Abusing API Access: Using	valid	but	excessive	API	permissions	to	modify	running	
workloads	or	escalate	access.

https://github.com/falcosecurity

12Elevating Kubernetes Security at Fastly

4.	 Persistence: Skilled	attackers,	once	in,	will	try	to	ensure	they	can	stay	in.	In	Kubernetes,	if	
they	popped	a	single	pod,	that	pod	might	be	ephemeral	(it	might	get	restarted	or	replaced).	
So	they	might	want	to	create	a	backdoor	for	persistence.	Examples:

• Backdoor Accounts: Creating	high-privilege	service	accounts	with	secret	tokens	for	
long-term	access.

• Malicious DaemonSets: Deploying	workloads	that	restart	persistently	across	nodes,	
making	removal	difficult.

• Scheduled Jobs:	Using	CronJobs	to	execute	malicious	actions	at	regular	intervals.

Defender’s angle:	This is tricky – the best approach is to prevent getting to this stage.
However, monitoring changes in the cluster can help; for example, suddenly seeing a new
high-privilege service account or an unfamiliar deployment in the cluster should raise red
flags. Kubernetes audit logs and tools that can baseline your cluster state (like configuration
management tools) are useful. In cloud-managed clusters, ensure CloudTrail (AWS) or
equivalent logs for API calls are enabled to catch creation of new roles or resources.

Defender’s angle:	Principle of least privilege is key. Ensure that if one part of your system is
compromised, it can’t easily escalate. Concretely: run containers as non-root with minimal
Linux capabilities, avoid hostPath volumes (or restrict them via Admissiom Controllers), lock
down RBAC so service accounts have only what they absolutely need.

5.	 Privilege Escalation: The	attacker	attempts	to	gain	higher-level	privileges	than	they	initially	
had.	If	they	started	in	a	low-privilege	container,	they	might	look	for	ways	to	become	root	in	
the	container	or	escape	to	the	node.	Kubernetes-specific	escalation	might	involve:

• Container Escape:	Exploiting	a	misconfigured	or	vulnerable	container	to	gain	access	
to	the	host.

• Service Account Abuse: Using	an	overprivileged	service	account	to	create	pods	or	
access	cluster-wide	secrets.

• API Server Exploitation: Taking	advantage	of	Kubernetes	vulnerabilities	
(such	as	CVE-2018-1002105)	to	escalate	privileges	via	the	kubelet	API.

13Elevating Kubernetes Security at Fastly

6.	 Defense Evasion: Once	inside	the	cluster,	an	attacker	will	attempt	to	evade	detection	to	
maintain	access	and	continue	their	objectives	undisturbed.	This	involves	concealing	their	
activities,	bypassing	monitoring	tools,	or	disabling	security	controls.	In	Kubernetes,	common	
evasion	techniques	include:

• Disabling Logging and Monitoring: Attackers	with	API	or	node	access	may	attempt	to	
disable	Kubernetes	audit	logging,	delete	logs,	or	tamper	with	monitoring	agents	(e.g.,	
killing	a	Falco	DaemonSet	or	modifying	Prometheus	alert	rules).

• Masquerading as Legitimate Workloads: Instead	of	deploying	obviously	malicious	
containers,	an	attacker	might	modify	existing	Deployments,	inject	malicious	sidecars,	or	
use	kubectl	exec	to	blend	in	with	normal	operations.

• Process Hiding and Kernel-Level Manipulation: If	an	attacker	gains	privileged	access	
to	a	node,	they	may	use	techniques	like	LD_PRELOAD	hijacking,	eBPF-based	process	
hiding,	or	modifying	cgroups	to	conceal	their	activity.

• Tampering with Security Policies:	Attackers	might	edit	or	delete	Network	Policies,	Pod	
Security	Standards,	or	Admission	Controllers	to	relax	security	restrictions	without	raising	
immediate	alarms.

• Cleaning Up Artifacts: To	cover	their	tracks,	attackers	may	remove	container	file	system	
modifications,	delete	evidence	of	executed	commands	from	.bash_history,	or	restore	
modified	Kubernetes	resources	to	their	original	state.

Defender’s angle: Ensure logs are stored externally and monitor for sudden gaps or
deletions. Restrict API and RBAC permissions to prevent attackers from disabling security
tools or modifying defenses. Runtime security tools like Falco can catch suspicious activity,
while network policies and file integrity monitoring help detect tampering. The goal is to
make evasion difficult, increasing the chances of early detection.

14Elevating Kubernetes Security at Fastly

Defender’s angle:	Network segmentation and strict RBAC are the primary defenses.
Network Policies should limit which pods can talk to which, making it harder for an attacker
in one compromised pod to reach others. Also, not all pods should be able to talk to
control plane components except through the API server. If an attacker has compromised
a container, having strong isolation between namespaces (and using separate credentials
for different applications) can limit what they can do next. Monitoring lateral movement can
be done by network flow logs or IDS systems, but those can be complex in Kubernetes –
however, unusual connections (like a frontend pod suddenly querying a database it never
touched before) might be detectable.

Defender’s angle:	Secrets management is vital – Encrypt secrets at rest (so even if etcd
is accessed, it’s not plain text), and strictly control access to them (RBAC and possibly
external secret managers like HashiCorp Vault). Also, avoid putting secrets in environment
variables.

7.	 Lateral Movement: Now	the	attacker	has	some	level	of	access,	perhaps	even	high	privileges	
on	one	node	or	in	one	namespace,	and	they	want	to	move	to	other	parts	of	the	environment.	
They	might:

• Network Scanning: Mapping	internal	services	by	probing	open	ports	within	the	cluster.

• Service Account Abuse: Using	an	overprivileged	service	account	to	access	different	
namespaces	or	workloads.

• Node Compromise: If	an	attacker	gains	access	to	a	node,	they	may	attempt	to	exploit	the	
kubelet	API	or	move	laterally	across	other	nodes.

8.	 Credential Access: The	attacker	will	search	for	secrets,	credentials,	and	configuration	info	
to	further	their	goals.	They	might	attempt:

• Reading Kubernetes Secrets:	If	access	allows,	attackers	may	dump	secrets	to	find	API	
keys,	database	passwords,	or	cloud	credentials.

• Extracting Service Account Tokens: Using	a	pod’s	automatically	mounted	service	
account	token	to	authenticate	with	the	Kubernetes	API.

• Harvesting Config Files:	Checking	environment	variables	and	mounted	config	files	for	
sensitive	data.

15Elevating Kubernetes Security at Fastly

9.	 Discovery

• Enumerating API Resources:	Using	kubectl	or	API	queries	to	list	all	services,	routes,	
and	workloads.

• Probing Network Services: Scanning	for	internal	services	with	open	ports	and	
weak	authentication.

• Examining Cluster Configurations: Looking	for	misconfigurations,	unused	service	
accounts,	or	exposed	endpoints.

Defender’s angle:	You cannot prevent an attacker from querying information they are
authorized to access, but implementing the principle of least privilege ensures that they
cannot access data they shouldn’t. Audit logging can help track unusual behavior, such
as an individual listing a large number of resources in an atypical manner. It’s important to
restrict Role-Based Access Control (RBAC) access to API calls and monitor for excessive
resource enumeration. Additionally, network segmentation can help prevent attackers from
scanning the cluster freely.

Defender’s angle: By this stage, if all earlier defenses failed, you’re in damage control.
Your monitoring and alerting should catch unusual outbound traffic or large data transfers.
Egress controls can help (limiting which pods can talk out to the internet, or using DLP
systems to monitor data egress). Regular backups of data and cluster state are essential so
you can recover if things are wiped or ransomed. And having an incident response plan is
key to containing the damage.

10.	 Impact (Exfiltration or Damage):	Finally,	the	attacker	achieves	their	goal,	which	could	be:

• Data Exfiltration: Copying	out	sensitive	data	(user	data,	intellectual	property).	For	
example,	exporting	database	contents,	or	even	making	an	entire	etcd	backup	if	they	have	
that	level	of	access.	They	might	send	data	out	over	the	internet	from	a	pod	or	use	cloud	
APIs	if	credentials	are	available	(e.g.,	accessing	an	S3	bucket).

• Cryptojacking (Resource Theft): Installing	crypto	mining	software	across	pods	or	nodes	
to	harness	your	compute	for	their	gain	

• Ransom / Destruction: Encrypting	data	or	deleting	Kubernetes	resources	to	cause	denial	
of	service,	then	demanding	ransom.	Or	simply	disrupting	services	as	an	end	in	itself.

• Cluster Takeover: Using	your	cluster	as	part	of	a	botnet	or	to	pivot	into	your	other	
infrastructure	(maybe	from	Kubernetes	into	your	corporate	network	if	not	isolated).

16Elevating Kubernetes Security at Fastly 16

Securing the
Kubernetes Software
Supply Chain: Images, Builds,
and Deployment Pipelines

The	first	link	in	our	Kubernetes	security	chain	is	the	software	we	deploy.	If	the	applications	or	
containers	themselves	are	malicious	or	vulnerable	from	the	start,	it’s	game	over	–	the	attack	
doesn’t	even	need	to	break	in,	because	we	invited	it	in.	This	is	why	supply chain security	is	critical.	
In	a	Kubernetes	context,	supply	chain	security	focuses	on	container	images,	build	processes,	and	
deployment	pipelines.

Why Supply Chain Security Matters
Consider	that	a	typical	container	image	might	be	built	on	a	base	image	(like	Debian	or	Alpine	Linux)	
and	include	dozens	of	libraries.	Each	of	those	could	have	known	vulnerabilities.	Attackers	know	
this,	and	they	actively	search	for	deployments	running	outdated	images	that	they	can	exploit.	Even	
more	insidious,	attackers	may	hide	malware	in	images	that	appear	benign	–	for	example,	a	public	
Docker	Hub	image	named	similarly	to	a	popular	one,	hoping	someone	will	use	it	by	mistake.

Real-world	example:	In	2018,	a	security	researcher	found	several	malicious	images	on	Docker	Hub	
that	had	been	downloaded	millions	of	times.	They	contained	cryptominers	that	would	start	mining	
cryptocurrency	as	soon	as	the	container	ran,	unknowingly	costing	the	users	(and	their	cloud	
providers)	money.	This	kind	of	attack	doesn’t	exploit	a	vulnerability	in	Kubernetes	itself	–	it	exploits	
trust.	If	you	trust	an	image	from	an	unverified	source,	you	might	be	running	an	attacker’s	code	
inside	your	cluster.

Another	vector	is	the	build	pipeline.	If	an	attacker	can	compromise	your	CI/CD	system	or	the	
process	of	building	and	pushing	images,	they	can	insert	backdoors.	A	famous	example	outside	
containers	is	the	SolarWinds	incident,	where	attackers	compromised	the	build	system	to	insert	

17Elevating Kubernetes Security at Fastly

malicious	code.	In	container	land,	that	could	translate	to	pushing	a	malicious	layer	into	your	image	
or	stealing	credentials	from	a	CI	job	to	later	push	a	fake	image.

Supply	chain	attacks	are	a	big	enough	concern	that	even	government	agencies	emphasize	them.	
supply	chain	risks	are	one	of	the	top	three	sources	of	compromise	highlighted	by	NSA/CISA	
Kubernetes	guidance

The takeaway: we	need	to	ensure	that	the	images	and	configurations	we	deploy	to	
Kubernetes	are	as	secure	and	verified	as	possible.

Best Practices for Container Image Security
1.	 Use Trusted Base Images: Start	your	Dockerfiles	FROM	well-known	and	trusted	base	
images.	Official	images	from	Docker	Hub	or	your	OS	vendor	(like	the	official	Node.js	or	
Python	images,	or	distroless	base	images	from	Google)	are	usually	better	maintained.	Be	
cautious	with	random	images	published	by	unknown	users.

2.	Minimize Image Contents: The	more	software	in	your	image,	the	more	potential	
vulnerabilities.	Follow	a	minimalistic	approach:

•	 Use	slim	or	alpine	variants	if	possible	(e.g., python:3.11-slim	instead	of	full	
python:3.11).

•	 Remove	unnecessary	packages	and	dependencies.	If	you	only	need	a	single	binary,	
consider	using	scratch	or	distroless	images	which	contain	almost	nothing	except	your	
app	and	minimal	runtime.

•	 Multi-stage	builds	can	help	produce	lean	final	images	(build	in	one	stage,	then	copy	only	
the	needed	artifacts	into	a	small	runtime	image).

This	reduces	the	attack	surface.	NIST	recommends	using	minimal	base	images	and	avoiding	
unnecessary	software	

3.	 Regularly Scan Images for Vulnerabilities: Incorporate vulnerability scanning into your
development pipeline. There are many tools (both open-source and commercial):

• Trivy	(open	source	by	Aqua	Security)	–	scans	container	images	for	known	vulnerabilities	
in	OS	packages	and	language-specific	dependencies.

• Anchore Engine	or	its	CLI	tools	like	Syft/Grype	–	open	source	image	scanners.

• Clair	–	an	open	source	scanner	that	can	integrate	with	registries	like	Quay.

• Snyk, Docker Hub’s built-in scanner,	etc.	–	there	are	also	services	that	scan	images		
in	registries.

Scanning	should	be	done	before	deployment	(e.g.,	as	part	of	CI),	in	addition	to	runtime.	If	critical	
vulnerabilities	are	found,	fix	them	(update	the	package	or	image).	Some	organizations	enforce	
policies	to	block	deploying	images	with	high-severity	vulnerabilities	until	they’re	addressed.	The	
NSA/CISA	guidance	actually	suggests	using	an	admission	controller	to	prevent	vulnerable	images	
from	running	–	meaning	Kubernetes	would	reject	a	pod	if	its	image	hasn’t	passed	a	vulnerability	
scan	(though	implementing	that	requires	some	pipeline	integration).

https://kubernetes.io/blog/2021/10/05/nsa-cisa-kubernetes-hardening-guidance/#:~:text=The%20guidance%20highlights%20the%20following,three%20sources%20of%20compromises
https://kubernetes.io/blog/2021/10/05/nsa-cisa-kubernetes-hardening-guidance/#:~:text=The%20guidance%20highlights%20the%20following,three%20sources%20of%20compromises

18Elevating Kubernetes Security at Fastly

4.	 Update Base Images and Dependencies Frequently: New	vulnerabilities	appear	all	the	time.	
If	you	built	an	image	six	months	ago	and	haven’t	updated	it,	it	likely	has	known	issues	now.	
Establish	a	routine	to	rebuild	images	with	updated	base	images	and	libraries.	Dependabot	
or	similar	tools	can	alert	on	outdated	dependencies	even	in	container	contexts.	Also	track	
security	advisories	for	your	base	images.

5.	 Verify Image Provenance (Image Signing): To	ensure	that	the	image	you	deploy	is	exactly	
the	one	you	intended	and	not	tampered	with,	use	image	signing.	Docker	has	a	content	
trust	feature	(Notary	v1)	and	the	modern	approach	is	using	Sigstore	Cosign	to	sign	images.	
This	involves	generating	a	cryptographic	signature	for	an	image	and	then	configuring	your	
cluster	(or	deployment	pipeline)	to	verify	that	signature.

•	 For	example,	you	can	sign	an	image	with	Cosign,	and	then	an	admission	controller	(like	
an	OPA	Gatekeeper	policy	or	Kyverno	rule,	or	Cosign’s	own	webhook)	can	check	that	
any	image	being	launched	is	signed	by	your	trusted	key.	This	prevents	an	attacker	from	
tricking	you	into	running	an	image	they	built.

•	 While	implementing	signing	can	have	setup	overhead	(managing	keys,	etc.),	it’s	
increasingly	recommended	for	production	environments,	especially	where	compliance	
requires	ensuring	software	integrity.

6.	 Use Private Registries and Access Controls: Host	your	images	in	a	private	registry	that	

you	control	(or	a	trusted	cloud	registry	like	ECR,	GCR,	etc.,	with	proper	permissions).	Public	
registries	are	fine	for	base	images	and	open-source	components,	but	your	custom	app	
images	should	be	in	a	private	repo.	Lock	down	who	can	push	images	to	the	registry,	and	use	
unique,	strong	credentials	for	the	registry.	This	reduces	the	risk	of	an	attacker	pushing	a	
malicious	image	with	the	same	name	as	one	of	your	apps.

7.	 Enforce Image Policies in Kubernetes: Kubernetes	has	some	built-in	and	add-on	
mechanisms:

•	 The	AlwaysPullImages	admission	plugin	(when	enabled	on	the	API	server)	forces	every	
new	pod	to	pull	its	image	from	the	registry,	rather	than	using	a	potentially	cached	copy	
on	a	node.	This	ensures	that	if	someone	had	somehow	planted	an	image	on	a	node	with	
the	same	name,	it	won’t	be	used.	It	also	means	you	always	get	the	latest	version	of	the	
image	(if	you	updated	it).

•	 You	can	use	Open	Policy	Agent	(OPA)	Gatekeeper	or	Kyverno	to	write	policies	like	
“only	allow	images	from	my	registry”	or	“disallow	the	:latest	tag	in	images”	(because	
using	:latest	is	discouraged	–	it’s	better	to	use	an	explicit	version	tag	to	avoid	
unpredictability).

•	 Kubernetes’	Pod	Security	Standards	(baseline/restricted)	also	cover	some	aspects	like	
not	running	as	root,	which	is	more	runtime,	but	image	policy	can	tie	into	that	(ensuring	
USER	in	Dockerfile,	etc).

By	combining	these,	you	ensure	that	even	if	a	developer	accidentally	tries	to	run	randomuser/
ubuntu:latest,	the	system	will	reject	it	because	it’s	not	from	your	approved	repository	or	it’s		
not	signed.

19Elevating Kubernetes Security at Fastly

8.	 Secure Build and CI/CD Systems: This goes slightly beyond Kubernetes itself, but since
images come through CI/CD:

•	 Lock	down	CI	credentials	(don’t	embed	kubeconfig	with	cluster-admin	in	plaintext	in	CI	
scripts,	for	example).

•	 Ensure	the	CI	environment	is	patched	and	monitor	it	–	an	attacker	who	gets	into	CI	could	
manipulate	your	manifests	or	images.

•	 Use	ephemeral	CI	runners	for	sensitive	jobs,	so	there’s	no	long-lived	environment	to	
infect.

•	 If	using	Kubernetes	to	deploy	(like	GitOps	or	Flux,	or	Argo	CD),	ensure	those	deployment	
pipelines	are	also	secured	(Argo	should	have	RBAC,	etc.).

•	 Consider	employing	tools	to	scan	your	Kubernetes	manifests	(YAML	or	Helm	charts)	for	
misconfigurations	before	they	are	applied.	Tools	like	conftest,	kube-score,	kube-linter,	
or	Checkov	can	automate	static	analysis	of	configs	(ensuring,	for	instance,	you	didn’t	
accidentally	set	allowPrivilegeEscalation: true	or	leave	a	debug	port	open).

20Elevating Kubernetes Security at Fastly

Kubernetes
Network Security
– Segmentation and
Traffic Control

Kubernetes	networking	allows	all	pods	and	services	to	talk	to	each	other	by	default,	which	is	
convenient	for	development	but	potentially	dangerous	in	production.	If	an	attacker	compromises	
one	pod,	they	could	move	laterally	by	connecting	to	other	pods,	including	those	in	different	
namespaces,	unless	we	put	guardrails	in	place.	In	this	chapter,	we	focus	on	network	security	for	
Kubernetes:	how	to	restrict	traffic	between	pods	(and	to/from	the	cluster)	using	network	policies	
and	other	mechanisms,	and	how	to	introduce	layers	like	service	mesh	for	zero-trust	networking.

The Basics of Kubernetes Networking
Out	of	the	box,	Kubernetes	imposes	a	flat	network:

•	 Every	pod	gets	an	IP	address,	and	by	default	pods can communicate with each other by IP
across the cluster, regardless of namespace or which node they’re on .	There	is	no	built-in	
isolation;	network	isolation	is	a	responsibility	of	the	network	plugin	via	NetworkPolicies	
(if	used).

•	 Services	provide	stable	IPs	and	load	balancing	to	pods,	but	from	a	network	perspective,	they	
typically	don’t	restrict	source/destination	(unless	using	specific	Service	types	or	external	
firewall	rules).

•	 The	Kubernetes	kube-proxy	handles	routing	for	Services	(using	iptables	or	IPVS	rules	on	
nodes).	It	doesn’t	filter	traffic;	it	just	ensures	it	goes	to	the	right	pod.

•	 By	default,	Kubernetes	doesn’t	come	with	a	firewall	between	pods.	It	assumes	a	trust	zone	
(the	cluster	network).

21Elevating Kubernetes Security at Fastly

This	means:

•	 If	Mallory	gains	access	to	one	pod,	she	can	scan	the	entire	cluster’s	pod	IP	range	and	likely	find	
and	connect	to	other	pods	(e.g.,	database	pods,	internal	services)	unless	additional	measures	are	
in	place.

•	 All	pods	can	also	typically	reach	the	internet	(for	updates,	etc.),	unless	restricted	by	cloud-level	
egress	rules	or	network	policies.

Network Policies – Kubernetes Firewall
NetworkPolicy	is	a	Kubernetes	resource	(in	the	networking.k8s.io	API	group)	that	acts	like	a	firewall	
policy	for	pods	at	the	IP	level	(Layer	3/4).	Network	policies	allow	you	to	specify	which	connections	are	
allowed	to	or	from	a	set	of	pods;	any	traffic	not	explicitly	allowed	by	any	applicable	policy	is	blocked	
(default	deny).

Important	points:

•	 NetworkPolicies	are	namespaced.	They	only	govern	pods	within	their	namespace	(they	can,	
however,	allow/deny	traffic	to/from	pods	in	other	namespaces	if	selected).

•	 They	are	implemented	by	the	CNI	plugin	(Calico,	Cilium,	Weave,	etc.).	If	your	cluster’s	network	
plugin	doesn’t	support	network	policies,	creating	the	resource	will	do	nothing.	Most	managed	
Kubernetes	offerings	have	network	policy	support	(either	via	their	default	CNI	or	an	option	to	
enable	one	like	Calico).

•	 A	NetworkPolicy	can	have	rules	for	ingress (incoming to pods)	and/or	egress (outgoing from
pods).	You	can	restrict	one	or	both.

•	 They	work	by	selecting	pods	via	labels	(similar	to	how	Services	or	Deployments	select	pods).

By	default,	if	you	don’t	create	any	NetworkPolicy,	it’s	as	if	there	is	an	allow-all	policy	(i.e.,	no	
restrictions).	Once	you	create	one	or	more	policies	that	select	a	pod,	any	traffic	not	allowed	by	those	
policies	is	blocked.	To	effectively	lock	down,	one	common	pattern	is	to	create	a	“default	deny”	policy	
for	a	namespace	(which	selects	all	pods	but	allows	nothing),	then	create	specific	allow	policies	for	the	
traffic	you	need.

Example scenario:	In	a	typical	microservice	app,	you	might	want:

•	 The	frontend	pods	to	be	allowed	to	talk	to	the	backend	API	pods.

•	 The	backend	API	pods	to	talk	to	a	database	service.

•	 But	you	might	want	to	prevent	the	frontend	from	directly	querying	the	database,	or	one	
microservice	from	talking	to	another	if	it’s	not	needed.

•	 Also,	pods	from	team	A’s	namespace	should	likely	not	talk	to	pods	in	team	B’s	namespace	(if	
those	are	unrelated	applications),	unless	via	some	public	interface.

NetworkPolicies	can	enforce	all	that,	effectively	creating	micro-segments	in	your	cluster’s	network.

22Elevating Kubernetes Security at Fastly

Key fields in a NetworkPolicy:

•	 	podSelector:	which	pods	the	policy	applies	to	(often	you	select	by	app	label	or	just		
	everything	in	the	namespace).

•	 	policyTypes:	Ingress	and/or	Egress.

•	 	ingress:	list	of	ingress	rules,	each	rule	can	allow	traffic	from	certain	peers	(specified	by	
pod		
	labels,	namespace	labels,	and/or	IP	blocks)	to	certain	ports/protocols.

•	 	egress:	similarly,	rules	for	outgoing	traffic.

•	 	If	a	pod	is	selected	by	a	policy	and	no	rule	matches	a	particular	traffic,	it’s	denied.	If	a	pod	
	is	not	selected	by	any	NetworkPolicy,	it’s	unaffected	(all	traffic	allowed).

Implementing Network Policies – Best Practices
• Start with Namespace Isolation:	If	you	have	distinct	applications	or	environments	in	separate	
namespaces,	consider	a	default	deny	policy	for	each,	so	that	cross-namespace	traffic	is	
prohibited	unless	explicitly	allowed.	You	can	label	namespaces	and	use	those	labels	in	
network	policy	selectors	to	allow	only	specific	cross-namespace	communications.

• Use a Default Deny (Isolation) Policy:
E.g.,

kind: NetworkPolicy

metadata:

 name: default-deny

 namespace: prod

spec:

 podSelector: {} # selects all pods in “prod”

 policyTypes:

 - Ingress

23Elevating Kubernetes Security at Fastly

Beyond NetworkPolicy: Advanced Traffic Control
Service Mesh (mTLS and Authorization):	While	NetworkPolicies	work	at	IP/port	level,	a	service	
mesh	(like	Istio,	Linkerd,	Consul	Connect)	operates	at	the	application	layer.	Service	meshes	can	
encrypt	traffic	between	services	with	mutual	TLS	(so	even	if	someone	sniffs	the	network,	they	
see	only	encrypted	data).	They	can	also	do	request-level	authorization	(e.g.,	service	A	is	allowed	
to	call	service	B’s	endpoints,	but	not	service	C).	This	is	an	additional	layer	(and	adds	complexity/
resources),	but	in	high-security	environments,	it	ensures	zero-trust	even	within	the	cluster	–	every	
service	authenticates	to	every	other	service	on	each	call.

Ingress/Egress Controllers:	For	traffic	entering	or	leaving	the	cluster,	ensure	you	use	a	secure	
Ingress	controller	or	API	Gateway.	For	example,	an	NGINX	ingress	controller	should	be	configured	
to	only	allow	TLS,	use	security	headers,	etc.	For	egress,	some	companies	route	all	outbound	traffic	
through	a	proxy	for	monitoring.	Kubernetes	doesn’t	have	a	built-in	egress	gateway	by	default	(Istio	
provides	one,	or	you	implement	at	network	level).

DNS Policies: Kubernetes	doesn’t	natively	restrict	DNS	by	policy,	but	some	CNI	plugins	(like	Cilium)	
let	you	create	rules	based	on	DNS	names	for	egress	(e.g.,	only	allow	access	to	*.mycompany.com).	
Also,	ensure	that	your	CoreDNS	(the	internal	DNS	server)	is	not	accessible	from	outside	and	is	
patched	(there	have	been	vulnerabilities	in	CoreDNS	in	the	past).

Network Segmentation Outside the Cluster:	Ensure	the	cluster’s	nodes	or	VPC	are	segmented	
from	your	other	infrastructure	appropriately.	For	example,	if	your	Kubernetes	cluster	is	in	the	same	
flat	network	as	your	database	servers	not	under	Kubernetes,	a	compromised	pod	might	directly	try	
to	hit	a	database.	Better	to	put	Kubernetes	nodes	in	their	own	subnet/VPC	and	tightly	control	what	
they	can	reach	outside	of	Kubernetes	context	(some	access	might	be	needed,	e.g.,	to	a	central	
database,	but	then	use	cloud	security	groups	or	firewall	rules	to	only	allow	the	Kubernetes	master	
IPs	or	specific	pod	CIDRs).

24Elevating Kubernetes Security at Fastly

Hardening Kubernetes
Access: Authentication,
Authorization, and
Service Identity

Kubernetes’	power	is	concentrated	in	its	API	server	–	whoever	(or	whatever)	can	send	commands	
to	the	API	server	effectively	controls	the	cluster.	Thus,	securing	access	to	the	Kubernetes	API	is	
one	of	the	most	critical	aspects	of	cluster	defense.	In	this	section,	we	discuss	how	Kubernetes	
authentication	and	authorization	work,	best	practices	for	Role-Based	Access	Control	(RBAC),	and	
how	to	ensure	that	only	the	right	people	and	services	have	the	minimum	permissions	they	need.

Kubernetes Authentication Basics
Authentication	is	about	confirming	who	you	are	(or	what	entity	you	are).	Kubernetes	supports	
multiple	authentication	methods:

• Client Certificates:	When	Kubernetes	is	set	up	(via	kubeadm	or	in	managed	services),	each	
component	and	each	admin	user	can	have	X.509	certificates.	For	example,	you	might	have	a	
certificate	for	user	“admin”.	Kubectl	uses	these	(via	the	kubeconfig	file)	to	authenticate	to	the	
API	server.	Certificates	are	verified	by	the	API	server’s	CA.

• Bearer Tokens:	These	are	like	API	keys.	Kubernetes	historically	could	use	static	tokens	set	in	
a	file	(not	recommended	now)	or	dynamically	issued	tokens.	Service	accounts	(more	on	them	
soon)	use	bearer	tokens	–	essentially	long	random	strings	that	are	presented	with	requests.

• Authentication Plugins:	You	can	configure	the	API	server	to	use	an	external	authentication	
provider.	A	common	practice	in	enterprises	is	to	use	OIDC	(OpenID	Connect)	to	integrate	with	
an	identity	provider	(like	Keycloak,	Dex,	or	cloud	IAM	services).	That	way,	users	can	log	in	
with	corporate	credentials	(SSO)	and	get	a	token	for	Kubernetes.

• Cloud Provider IAM:	Some	managed	solutions	allow	tying	into	their	IAM.	For	instance,	AWS	
EKS	can	allow	IAM	entities	to	authenticate	and	then	maps	them	to	Kubernetes	roles	via	a	
config	map.	Similarly,	Azure	and	GCP	have	their	mechanisms.

25Elevating Kubernetes Security at Fastly

By	default,	in	most	clusters	you	interact	with,	you	probably	use	a	kubeconfig	file	that	contains	
either	a	client	certificate	or	a	token	(or	it	might	exec	an	external	auth	command	to	get	a	token	via	
OIDC).	As	an	admin,	you	should	ensure	there	are	no	unused	or	overly	privileged	credentials	floating	
around.	Disable	basic	authentication	(username/password)	and	legacy	token	file	auth	if	they’re	not	
needed.

One	important	built-in	account	is	kubernetes-dashboard	(if	you	have	the	Dashboard	installed)	–	
ensure	that	is	secured	(the	Dashboard	now	doesn’t	have	full	admin	rights	by	default,	but	earlier	
it	was	a	risk).	Also,	if	using	kubeconfig	files,	treat	them	like	passwords;	don’t	accidentally	commit	
them	to	git	repositories	(attackers	actively	search	GitHub	for	kubeconfigs	or	cloud	keys).

Role-Based Access Control (RBAC)
Once	a	user	is	authenticated,	Kubernetes	needs	to	decide	what	that	user	(or	service	account)	
is	allowed	to	do.	This	is	authorization.	Kubernetes	uses	RBAC	as	the	main	mode	(it	can	also	be	
configured	for	ABAC	or	other	modes,	but	RBAC	is	the	standard).

RBAC has a few key concepts:

• Role and ClusterRole:	A	Role	defines	a	set	of	permissions	(verbs	on	resources)	within	a	
specific	namespace.	For	example,	a	Role	can	allow	“get,	list,	watch”	on	pods	in	the	dev	
namespace.	A	ClusterRole	is	similar	but	not	bound	to	a	namespace	(it	can	give	access	to	
cluster-wide	resources	like	nodes,	or	be	used	in	any	namespace).

• RoleBinding and ClusterRoleBinding: These	bind	a	Role	(or	ClusterRole)	to	a	user,	group,	
or	service	account.	A	RoleBinding	is	within	a	namespace	(e.g.,	bind	a	user	to	a	Role	in	
that	namespace),	and	a	ClusterRoleBinding	can	grant	cluster-wide	access	(or	access	to	a	
ClusterRole’s	permissions	across	all	namespaces).

Service Accounts:	These	are	special	accounts	meant	for	applications	(pods)	to	use.	Every	
namespace	has	a	default	service	account,	and	pods	use	it	by	default	(unless	you	specify	a	different	
service	account	in	the	pod	spec).	Service	accounts	have	associated	tokens	that	pods	can	use	to	
call	the	API	server	(for	example,	a	pod	might	list	other	pods	or	read	a	ConfigMap	if	it	has	rights).	
Managing	what	service	accounts	can	do	via	RBAC	is	crucial	to	limit	what	a	compromised	application	
can	do.

RBAC Best Practices:

• Least Privilege: Follow	the	principle	of	least	privilege	religiously.	Only	give	users	or	service	
accounts	the	minimum	permissions	they	need	to	do	their	job	(Role	Based	Access	Control	
Good	Practices	|	Kubernetes).	For	example,	if	an	application	only	needs	to	read	from	a	
specific	ConfigMap	in	its	namespace,	don’t	give	it	a	role	that	can	read	all	ConfigMaps	or,	
worse,	all	Secrets.

• Use Namespaced Roles where possible:	If	someone	only	needs	access	in	one	namespace,	
scope	a	Role	to	that	namespace	instead	of	using	a	ClusterRole.	ClusterRoles	should	be	
reserved	for	cluster-wide	operations	or	for	convenience	when	you	truly	need	the	same	
access	in	all	namespaces.

https://kubernetes.io/docs/concepts/security/rbac-good-practices/#:~:text=Least%20privilege
https://kubernetes.io/docs/concepts/security/rbac-good-practices/#:~:text=Least%20privilege

26Elevating Kubernetes Security at Fastly

• Avoid Wildcards in Permissions:	Rather	than	giving	“*”	access	to	all	resources	or	all	verbs,	
enumerate	only	the	specific	ones	needed	(Kubernetes	RBAC:	Best	Practices	&	Examples	-	
Kubecost).	For	instance,	an	app	might	need	read	access	to	ConfigMaps,	but	not	to	Secrets	–	
don’t	just	give	it	access	to	all	configmaps, secrets	in	one	rule	if	Secrets	are	not	required.

• Don’t Use Cluster-Admin Lightly: The	built-in	ClusterRole	cluster-admin	basically	gives	
full	control.	Only	bind	this	to	superuser	accounts.	If	a	user	just	needs	to	debug	pods	in	all	
namespaces,	consider	a	custom	ClusterRole	that	lists	pods	in	all	namespaces,	rather	than	
cluster-admin.

• Service Account Isolation:	Create	separate	service	accounts	for	different	deployments,	
especially	if	they	need	different	levels	of	access.	By	default,	the	service	account	token	is	
mounted	in	pods	–	if	they	get	compromised,	the	attacker	gets	that	token.	If	all	pods	use	the	
default	service	account	which	has	broad	permissions,	that’s	a	big	risk.	Instead,	give	each	app	
its	own	service	account	with	limited	RoleBinding.	If	an	app	doesn’t	need	to	call	the	API	at	all,	
you	can	even	set	automountServiceAccountToken: false	in	its	pod	spec	to	not	give	it	a	
token	at	all.

• Group Management:	If	you	have	many	users,	manage	them	via	groups	in	your	identity	
provider	and	bind	the	group	to	roles.	For	instance,	a	“developers”	group	might	get	view	
access	on	a	dev	namespace,	whereas	an	“ops”	group	gets	broader	access.	This	way,	adding	
a	user	to	the	appropriate	group	in	your	SSO	automatically	gives	them	the	right	access	in	
Kubernetes.

• Periodic Audits:	Regularly	review	who	has	what	access.	Kubernetes	doesn’t	have	a	built-
in	report	for	this,	but	you	can	use	commands	like	kubectl get rolebindings --all-
namespaces	and	kubectl describe clusterrolebindings	to	see	mappings.	There	
are	also	tools	(like	Fairwinds	RBAC	Lookup,	or	OpenShift’s	oc	adm	policy	who-can)	to	help	
enumerate	access.	Prune	any	accounts	or	bindings	that	are	no	longer	needed	(for	example,	if	
someone	left	the	team,	remove	their	account	binding).

• Beware of Impersonation Permissions:	Kubernetes	RBAC	has	an	ability	where	a	user	can	be	
allowed	to	“impersonate”	another	user	or	service	account.	Don’t	grant	impersonation	(verbs	
like	“impersonate”	on	users)	unless	required,	as	it	could	allow	someone	to	assume	a	more	
privileged	identity.

• Default Lockdown:	By	default,	new	clusters	have	no	default	RoleBindings	giving	broad	
access	to	normal	users	(in	fact,	most	clusters	start	with	an	empty	RBAC,	meaning	unless	
you	configure	it,	no	one	except	admin	cert-holders	can	do	anything).	That’s	good	–	you	then	
deliberately	grant	access.	In	older	versions	or	some	setups,	you	might	have	had	a	“cluster-
admin”	binding	for	the	system:authenticated	group	(meaning	every	authenticated	user	had	
full	run	of	the	cluster!)	–	ensure	that’s	not	the	case.

https://www.kubecost.com/kubernetes-best-practices/kubernetes-rbac-best-practices/
https://www.kubecost.com/kubernetes-best-practices/kubernetes-rbac-best-practices/

27Elevating Kubernetes Security at Fastly

Protecting the API Server Endpoint
RBAC	helps	control	what	an	authenticated	entity	can	do.	But	we	also	should	control	who can even
reach the API. Some	considerations:

• Network Access:	Ideally,	the	Kubernetes	API	server	should	not	be	open	to	the	entire	internet.	
In	cloud	setups,	use	security	groups	/	firewalls	to	restrict	the	source	IP	ranges	that	can	talk	to	
the	API	(maybe	only	your	office	network,	your	VPN,	etc.).	Attackers	can’t	exploit	an	API	they	
can’t	even	connect	to.

• Enable Audit Logging: This	isn’t	access	control	per	se,	but	it’s	crucial	for	visibility.	Turn	on	API	
server	audit	logs	(with	a	reasonable	policy)	so	you	have	an	audit	trail	of	who	did	what.	Many	
compliance	regimes	(like	PCI,	NIST	800-53)	require	auditing	administrative	actions.	Audit	
logs	will	show	if	someone	tried	to	perform	actions	they	weren’t	allowed	to,	or	if	a	certain	
account	suddenly	did	something	suspicious	(like	reading	all	secrets).

• Avoid Anonymous Access:	Kubernetes	used	to	allow	requests	with	no	auth	to	be	treated	as	
“anonymous”	user.	Ensure	--anonymous-auth=false	is	set	on	the	API	server	(most	modern	
setups	do	this	by	default,	or	at	least	RBAC	denies	anonymous	actions).	Similarly,	disable	
--insecure-port	(an	old	non-TLS	port	for	API,	which	is	gone	in	recent	versions).

• Protect etcd: This	is	slightly	aside	from	API,	but	the	etcd	database	behind	the	API	is	
essentially	another	way	to	get	cluster	info.	Make	sure	etcd	requires	authentication	(certs)	
and	is	not	externally	reachable.	If	an	attacker	directly	accessed	etcd	(which	should	be	on	a	
protected	network	segment	or	localhost),	they	could	read	or	write	cluster	state	bypassing	the	
API’s	authz	checks.

28Elevating Kubernetes Security at Fastly

Service Mesh Security – Enforcing Zero Trust for
Workloads
While	RBAC	and	network	policies	control	access	at	the	Kubernetes	API	and	namespace	levels,	they	
do	not	automatically	encrypt	traffic	between	workloads	or	verify	service	identities	at	runtime.	This	
is	where	a	service	mesh	(such	as	Istio,	Linkerd,	or	Consul)	provides	an	additional	layer	of	security	
by	enforcing	mTLS	(mutual	TLS),	workload	identity,	and	fine-grained	authorization	policies	for	
service-to-service	communication.

Mutual TLS (mTLS) – Encrypting Pod-to-Pod Traffic

By	default,	network	traffic	inside	a	Kubernetes	cluster	is	unencrypted.	Attackers	who	
compromise	a	pod	or	intercept	traffic	may	eavesdrop	on	sensitive	data	or	perform	
Man-in-the-Middle	(MITM)	attacks.

•	 A	service	mesh	automates	TLS	encryption	for	all	service-to-service	communication	(not	just	
API-to-service).

•	 Even	if	attackers	move	laterally	inside	the	cluster,	they	cannot	decrypt	intercepted	traffic.

•	 Example:	Istio	and	Linkerd	automatically	inject	sidecar	proxies	to	establish	mTLS	between	
workloads.

Workload Identity – Moving Beyond IP-Based Security

Traditional	Kubernetes	NetworkPolicies	rely	on	IP-based	restrictions,	which	can	be	bypassed	if	an	
attacker	gains	access	to	an	allowed	pod.	Service	mesh	enforces	identity-based	security	instead.

•	 Each	workload	receives	a	cryptographic	identity	(e.g.,	SPIFFE	IDs	in	Istio).

•	 Service-to-service	authentication	happens	at	Layer	7	(not	just	IP-based	network	controls).

•	 Example:	Even	if	an	attacker	spoofs	an	IP	or	moves	laterally,	they	cannot	impersonate	a	valid	
workload	identity	unless	they	compromise	the	mesh	itself.

Fine-Grained Authorization – Beyond RBAC

•	 RBAC	ensures	users	have	correct	Kubernetes	API	permissions,	but	it	does	not	control	which	
microservices	can	talk	to	each	other.

•	 Service	meshes	enable	service-to-service	RBAC-like	policies	using	authorization	policies.

•	 Example:	Istio	Authorization	Policies	define	which	workloads	can	call	which	services	based	
on	identity,	JWT	tokens,	HTTP	headers,	etc.

•	 This	prevents	attackers	from	pivoting	between	microservices,	even	if	they	breach	one.

29Elevating Kubernetes Security at Fastly

Workload Security –
Hardening Pods and
Containers

Even	with	strong	perimeter	defenses,	we	must	assume	that	an	attacker	might	eventually	run	
code	in	a	container	(via	a	software	vulnerability	or	misconfiguration).	Workload	security	is	about	
limiting	what	an	attacker	can	do	inside	a	compromised	container.	This	means	configuring	pods	and	
containers	to	run	with	the	least	privileges	necessary,	and	using	features	of	Kubernetes	and	Linux	to	
sandbox	and	restrict	their	capabilities.	In	this	section,	we’ll	cover	how	to	harden	your	pods:	avoiding	
running	as	root,	dropping	Linux	capabilities,	using	read-only	filesystems,	and	more.

Pod Security Standards and Policies
Kubernetes	has	a	built-in	concept	of	Pod	Security	Standards	(PSS)	which	defines	three	levels:

• Privileged:	Essentially	no	restrictions,	pods	can	do	all	sorts	of	host-level	access	(should	be	
avoided	except	in	special	cases).

• Baseline:	Restricted	to	prevent	known	bad	practices,	but	still	allows	some	flexibility.	E.g.,	
baseline	disallows	privileged	containers,	but	might	allow	running	as	root	if	needed.

• Restricted:	Tightest	level	–	enforce	nearly	all	best	practices	(must	run	as	non-root,	no	host	
namespace	access,	etc).

As	of	Kubernetes	v1.25,	PodSecurity	admission	is	enabled	by	default	to	replace	the	deprecated	
PodSecurityPolicy	(PSP).	You	can	enforce	PSS	by	namespace:

•	 By	adding	labels	to	a	namespace	like	pod-security.kubernetes.io/enforce: restricted	
(and	similar	for	audit	or	warn	levels),	the	API	server	will	reject	any	pod	that	doesn’t	meet	the	
restricted	standard	in	that	namespace.

30Elevating Kubernetes Security at Fastly

•	 For	example,	if	a	developer	tries	to	deploy	a	pod	that	runs	as	root	or	has	a	privileged	flag	in	a	
restricted	namespace,	they’ll	get	a	rejection.

Our recommendation: aim	for	the	restricted	profile	on	all	production	namespaces.	If	something	

truly	needs	to	be	looser,	you	can	use	baseline	on	a	case-by-case	basis	(or	a	separate	namespace	
for	that	component).

If	your	cluster	is	older	or	if	you	prefer	more	control:

• PodSecurityPolicy (PSP): was	an	older	mechanism	where	you	create	PSP	objects	and	grant	
users	permission	to	use	them.	PSP	is	removed	in	1.25+,	but	some	environments	(1.23	or	
earlier,	or	OpenShift’s	SCC	which	is	similar)	may	still	use	it.	The	concepts	are	similar	(restrict	
host	mounts,	user,	etc).

• Custom Policies via Gatekeeper/Kyverno:	You	can	also	enforce	custom	rules	using	policy	
engines.	For	instance,	using	Open	Policy	Agent	(OPA)	Gatekeeper	with	a	policy	template	to	
disallow	containers	running	as	root,	or	ensure	specific	labels,	etc.	Kyverno	(another	policy	
engine)	can	also	mutate	or	block	pods	that	don’t	meet	criteria.

Container Privileges and Linux Capabilities
User IDs (Don’t run as root):	By	default,	if	you	don’t	specify	a	user,	containers	run	as	UID	0	(root)	
inside	the	container.	While	this	root	is	namespaced	(it’s	not	root	on	the	host	unless	combined	
with	other	privileges),	it’s	still	dangerous.	If	the	container	process	escapes	or	accesses	the	host	
somehow,	and	it’s	root,	you’ve	essentially	given	the	attacker	root	on	the	host.	The	NSA	warns	that	
a	container	running	as	root	that	escapes	can	provide	complete	control	of	the	worker	node		
(A	Closer	Look	at	NSA/CISA	Kubernetes	Hardening	Guidance	|	Kubernetes).

Best	practice:

•	 In	your	Dockerfile,	use	a	non-root	USER	(like	USER 1000	or	a	specific	user).

•	 Or	at	least,	in	the	Kubernetes	pod	spec,	set	securityContext.runAsUser	to	a	non-zero	UID	
and	possibly	runAsNonRoot: true	(which	tells	Kubernetes	to	refuse	to	run	the	container	if	
the	image	doesn’t	have	a	non-root	user).

•	 Also	set	securityContext.runAsGroup	if	needed	for	file	permissions,	and	consider	
fsGroup	for	shared	volume	permissions.

By	running	as	a	less-privileged	user,	even	if	an	attacker	breaks	out	of	the	application,	they	face	
another	hurdle	for	host	compromise	(they	might	need	a	kernel	exploit	to	elevate	privileges).	It	also	
limits	damage	in	multi-container	pods	(one	container	might	not	be	able	to	tamper	with	another’s	
files	if	permissions	are	set	right).

Privileged flag:	Pods	(actually	containers)	have	a	boolean	flag	securityContext.privileged.	
If	true,	that	container	essentially	has	all	the	capabilities	of	the	host’s	root	(it’s	as	if	it’s	not	in	
a	namespace	for	certain	restrictions).	Privileged	containers	can	modify	the	host	(load	kernel	
modules,	access	all	devices,	etc).	You	should	almost never need privileged	in	a	normal	app.	It’s	
used	for	low-level	system	daemons	or	debugging.	Keep	it	off	(false)	for	all	application	pods.	Many	
admission	policies	will	outright	forbid	privileged	containers	cluster-wide.

https://kubernetes.io/blog/2021/10/05/nsa-cisa-kubernetes-hardening-guidance/#:~:text=However%2C%20none%20of%20these%20cases,worker%20or%20control%20plane%20nodes

31Elevating Kubernetes Security at Fastly

Linux Capabilities:	Linux	divides	root	privileges	into	subsets	called	capabilities.	By	default,	Docker	
(and	Kubernetes)	give	containers	a	limited	set	of	capabilities	(like	the	ability	to	send	raw	network	
packets,	etc.)	and	drop	others	(like	no	capability	to	modify	kernel	parameters,	no	raw	socket	by	
default?	Actually,	NET_RAW	is	typically	included	by	default	in	Docker’s	baseline,	which	is	why	ping	
works	out-of-the-box).

•	 You	can	explicitly	drop	additional	capabilities.	For	example,	securityContext.
capabilities.drop: [“NET_RAW”]	will	remove	the	ability	to	create	raw	network	packets,	
which	means	tools	like	ping	or	nmap	might	not	work.	This	is	good	to	limit	network	
reconnaissance	from	within	a	container.

•	 If	a	container	needs	a	specific	capability	(like	a	monitoring	container	might	need	NET_ADMIN	
to	adjust	networking),	you	can	add	only	that	capability	and	drop	all	others	to	keep	the	
privilege	set	minimal.

The	default	set	can	be	seen	in	Docker	docs;	it	includes	things	like	AUDIT_WRITE,	CHOWN,	NET_
RAW,	etc.	Often	you	want	to	drop	NET_RAW	at	least,	unless	needed.	Some	security	benchmarks	
recommend	dropping	all	capabilities	and	then	adding	back	needed	ones	–	though	in	practice	you	
might	drop	all	and	add	back	e.g.	SETPCAP	if	needed.

No New Privileges: There’s	a	securityContext	flag	allowPrivilegeEscalation.	This	should	be	
set	to	false	for	most	containers.	It	effectively	prevents	a	process	from	gaining	more	privileges	(for	
example	via	calling	setuid).	If	you	run	as	a	non-root	user	and	set	allowPrivilegeEscalation=false,	
then	even	if	some	binary	has	the	setuid	bit,	it	won’t	let	the	process	elevate	to	root.	(In	restricted	
PSS,	this	is	required	to	be	false	if	you	run	as	non-root.)

Filesystem and Device Permissions
Read-Only Root Filesystem:	If	your	container	image	doesn’t	need	to	write	to	the	root	filesystem,	
you	can	mount	it	read-only	(securityContext.readOnlyRootFilesystem: true).	This	means	
even	if	an	attacker	gets	in,	they	can’t	easily	install	malware	or	modify	scripts	on	the	fly	in	the	
container’s	own	filesystem	(they	would	be	limited	to	writing	to	any	ephemeral	or	mounted	volumes	
that	you	provided).	Many	stateless	apps	can	run	with	a	read-only	filesystem	if	coded	properly	(they	
might	write	to	/tmp	or	a	mounted	emptyDir	if	needed	for	temp	files).	The	NSA	guide	highlights	this	
as	an	often	overlooked	but	effective	hardening	step.

Filesystem Groups:	Using	fsGroup	in	a	pod	securityContext	ensures	that	mounted	volumes	
are	accessible	to	the	intended	non-root	user.	It’s	more	a	functionality	thing	than	security,	but	it	
prevents	situations	where	someone	would	be	tempted	to	run	as	root	just	to	access	a	volume.

Device Access:	By	default,	containers	have	no	access	to	host	devices	(except	possibly	/dev/
random	etc).	If	you	don’t	need	to	expose	any	host	device	(like	a	GPU	or	a	USB),	don’t	use	the	
devices:	feature	of	securityContext.	If	you	do	need	(say	GPU	for	ML),	Kubernetes	usually	requires	
using	device	plugins	which	handle	granting	limited	access.

32Elevating Kubernetes Security at Fastly

Host Namespaces:	Avoid	using	hostNetwork: true, hostPID: true, hostIPC: true	in	pod	
specs	unless	absolutely	needed.	These	settings	put	the	container	in	the	host’s	network,	PID,	or	IPC	
namespace	respectively,	which	breaks	isolation:

•	 	hostNetwork:true	means	the	pod	shares	the	node’s	network	stack	(it	can	see	all	host		
	interfaces,	open	ports	on	the	host	IP,	etc.).	This	might	be	needed	for	network	infrastructure		
	pods,	but	it	means	that	pod	can	sniff	host	traffic.

•	 	hostPID:true	means	the	pod	can	see	all	processes	on	the	node.	An	attacker	in	such	a	pod		
	could	potentially	attach	to	other	processes	(with	ptrace)	if	not	blocked	by	something	like		
	AppArmor.

•	 	hostIPC:true	similarly	shares	IPC	namespace	(rarely	needed).

HostPath volumes:	Mounting	a	hostPath	(a	directory	from	the	node’s	filesystem)	into	a	pod	is	very	
powerful.	It	can	be	useful	(for	example,	a	log	collector	might	need	to	read	/var/log/	on	nodes).	But	
it’s	also	a	way	to	break	out:	e.g.,	if	you	mount	the	host’s	/	or	/etc,	a	container	can	modify	host	files.	
Or	mounting	the	Docker	socket	/var/run/docker.sock	essentially	gives	full	control	of	the	host’s	
Docker	(and	thus	the	node).	Avoid	hostPath	unless	required,	and	if	you	must,	scope	it	narrowly	
(e.g.,	only	a	specific	subdirectory,	read-only	if	possible).	Admission	policies	can	restrict	hostPath	
usage	(e.g.,	only	allow	specific	directories,	or	only	allow	certain	trusted	service	accounts	to	use	
them).

Seccomp, AppArmor, and SELinux
These	are	Linux	security	mechanisms	that	can	sandbox	or	confine	processes:

• Seccomp (Secure Computing Mode):	Allows	filtering	of	system	calls	that	a	process	can	
make.	Docker	has	a	default	seccomp	profile	that	blocks	many	dangerous	syscalls	(like	
keyctl,	which	could	tamper	with	kernel	keyrings,	etc).	Kubernetes	can	use	that	default	if	
you	don’t	override	it.	You	can	also	specify	securityContext.seccompProfile	in	recent	
Kubernetes	(v1.19+).	It’s	wise	to	use	at	least	the	default	seccomp	profile	for	all	containers	
(which	is	automatically	applied	in	many	runtimes).	For	high	security,	you	might	design	custom	
seccomp	profiles	to	disallow	even	more	syscalls	for	specific	containers	that	don’t	need	
them.	In	Kubernetes	1.25,	there’s	even	an	alpha	feature	SeccompDefault	which	can	apply	the	
default	profile	cluster-wide	by	default.

• AppArmor:	A	kernel	module	(on	Ubuntu	and	some	other	distros)	that	can	restrict	file	access	
and	capabilities	of	a	process.	Kubernetes	can	set	an	AppArmor	profile	per	container	via	an	
annotation	(e.g.,	container.apparmor.security.beta.kubernetes.io/<container_name>:
runtime/default	or	a	custom	profile	name).	The	runtime/default	is	usually	an	AppArmor	
profile	that	is	the	Docker	default	(often	unconfined	or	very	lenient).	You	can	create	stricter	
AppArmor	profiles	(outside	K8s)	and	load	them	on	nodes,	and	then	have	pods	enforce	them.	
For	example,	you	could	have	a	profile	that	prevents	a	container	from	reading	certain	host	files	
even	if	it	somehow	got	access.	AppArmor	is	not	available	on	all	systems	(and	not	on	COS	or	
Red	Hat	which	use	SELinux).

33Elevating Kubernetes Security at Fastly

• SELinux:	Used	primarily	in	Red	Hat	based	systems	(and	OpenShift	clusters).	SELinux	labels	
and	types	can	isolate	containers.	In	OpenShift,	by	default,	every	pod	runs	with	a	unique	
SELinux	context	(type)	that	prevents	it	from	accessing	other	pods’	files	even	if	it	somehow	
could	reach	them.	SELinux	also	confines	what	system	calls	or	file	paths	a	process	can	
use	based	on	policy.	On	vanilla	Kubernetes,	you	can	request	an	SELinux	context	in	the	
securityContext	if	your	nodes	use	SELinux	(fields:	seLinuxOptions	specifying	type,	level,	
user,	role).	Most	people	don’t	manually	do	this	unless	they	have	a	specific	requirement,	
but	ensuring	SELinux	is	enabled	(not	set	to	Permissive	or	disabled)	on	the	host	can	add	an	
additional	layer	of	defense.

In	summary,	seccomp/AppArmor/SELinux	are	like	safety	nets:	even	if	an	attacker	gets	some	
privilege	in	the	container,	these	can	stop	certain	actions.	They	are	complex	to	fine-tune,	but	using	
the	defaults	(seccomp	default,	AppArmor	docker-default,	SELinux	enforcing)	already	improves	
security.

Implementing and Verifying Workload Security Settings

Tools and Automation:

•	 Use	config	scanners	(like	kubeaudit	by	Shopify	or	kubesec	or	Checkov)	to	check	YAMLs	for	
risky	settings.	For	instance,	kubeaudit	can	flag	pods	running	as	root	or	with	privilege.

•	 Enforce	via	CI:	e.g.,	reject	deployment	YAMLs	that	don’t	meet	your	security	baseline	(maybe	
via	a	GitOps	pipeline,	or	using	admission	controllers	as	mentioned).

•	 Gatekeeper	(OPA)	can	use	policies	like	“no	hostPath	unless	in	a	specific	namespace”	or	
“containers	must	drop	NET_RAW”.

•	 Kyverno	can	even	mutate	incoming	pods	to	add	safe	defaults	(like	automatically	insert	
runAsNonRoot: true	if	not	set).

•	 Kubernetes	now	(since	1.19)	also	surfaces	some	of	this	in	kubectl describe	or	events	if	a	
PSP	or	PodSecurity	prevents	something.

Verifying at runtime:

•	 You	can	exec	into	a	running	pod	and	check	if	it’s	running	as	expected	user:	e.g.,	run	id	
command	to	see	UID.

•	 Check	effective	capabilities:	one	way	is	grep CapEff /proc/1/status	in	the	container	
process.	Or	install	capsh	to	list	capabilities.

•	 Try	writing	to	a	filesystem	path	that	should	be	read-only	(it	should	fail).

34Elevating Kubernetes Security at Fastly

Monitoring and Threat
Detection in Kubernetes

Despite	all	preventative	measures,	we	need	visibility	into	our	cluster’s	activity	to	detect	potential	
intrusions	or	misuse.	Kubernetes	introduces	new	layers	to	monitor	(applications,	containers,	
orchestration	events),	so	our	monitoring	strategy	must	cover:

• Application and Pod Logs: for	diagnosing	what	apps	are	doing.

• Cluster Logs and Events:	like	Kubernetes	events,	audit	logs	from	the	API	server.

• Infrastructure Metrics:	CPU,	memory,	network	usage	that	might	indicate	anomalies	(e.g.,	
crypto	mining	typically	causes	high	CPU).

• Security Alerts: specialized	detection	of	suspicious	behavior	(like	someone	spawning	a	shell	
in	a	container,	or	accessing	a	sensitive	file	inside	a	container).

In	this	section,	we’ll	discuss	how	to	set	up	logging	and	monitoring,	and	how	to	leverage	open-
source	tools	like	Falco	for	runtime	threat	detection.

Centralized Logging and Monitoring
Application Logs:	Each	container	writes	stdout/stderr	which	Kubernetes	can	collect.	By	default,	
kubectl logs	shows	these.	For	a	production	setup,	use	a	log	aggregator:

• EFK stack (Elasticsearch, Fluentd, Kibana):	A	common	combination	where	Fluentd	(or	
Fluent	Bit)	runs	on	each	node	to	tail	container	log	files	and	send	to	Elasticsearch,	and	Kibana	
provides	a	UI	to	search	logs.	Many	cloud	Kubernetes	services	offer	integrated	logging	(e.g.,	
GCP’s	Stackdriver,	AWS	CloudWatch,	Azure	Monitor)	that	can	capture	these	logs	without	you	
managing	the	infra.

35Elevating Kubernetes Security at Fastly

• Loki (by Grafana) + Promtail + Grafana:	A	lighter-weight	logging	solution	that	stores	logs	in	a	
time-series	database.

By	aggregating	logs,	you	can	create	alerts	for	certain	log	patterns	(e.g.,	an	application	output	
“ERROR”	or	“Unauthorized	access	attempt”	could	alert	the	dev	team	or	sec	team).

Kubernetes Audit Logs:	If	enabled,	every	request	to	the	API	server	can	be	logged.	You	might	
configure	these	to	be	sent	to	a	secure	store	(like	an	S3	bucket	or	Elasticsearch).	Audit	logs	are	
crucial	to	detect	things	like	“was	there	an	attempt	to	create	a	ClusterRoleBinding	giving	cluster-
admin	to	an	unexpected	user?”	or	“who	deleted	resource	X?”.	They	can	be	noisy,	so	tune	the	audit	
policy	to	focus	on	sensitive	actions	(like	write	requests,	or	specifically	auth	failures	etc.).	Tie	this	
into	your	SIEM	(Security	Information	&	Event	Management)	system	if	you	have	one,	so	alerts	can	be	
generated	on	suspicious	API	calls.

Metrics Monitoring:	Use	Prometheus	to	gather	metrics	from	Kubernetes	and	applications.	
Prometheus	can	scrape	the	Kubernetes	metrics	(via	components	like	the	metrics-server	or	kube-
state-metrics	for	resource	stats).	Unusual	metrics	can	indicate	trouble:

•	 A	sudden	spike	in	outbound	network	traffic	from	a	pod	that	usually	stays	quiet	could	indicate	
data	exfiltration.

•	 Continuous	high	CPU	usage	in	a	pod	that	should	be	idle	might	indicate	crypto	mining	or	a	
hung	process.

•	 Prometheus	Alertmanager	can	be	configured	to	alert	on	such	conditions	(e.g.,	if	CPU	>	90%	
for	5	minutes	on	a	database	pod	unexpectedly,	notify).

Event Monitoring: Kubernetes	events	(viewable	via	kubectl get events)	provide	info	on	things	
like	pods	failing,	images	not	pulling,	etc.	Some	security-relevant	events	might	include	frequent	
container	restarts	(could	be	a	crash	loop	from	an	attack	or	probe),	scheduling	failures	(if	someone	
tried	to	run	a	privileged	pod	but	was	denied).	Tools	like	Prometheus	with	Alertmanager	or	even	
custom	controllers	can	watch	events	for	patterns.

Runtime Threat Detection with Falco
Preventive	controls	reduce	risk,	but	we	also	want	to	catch	an	attacker	in	the	act	if	they	manage	
to	bypass	prevention.	Falco	is	a	CNCF	project	(a	runtime	security	tool)	that	monitors	system	calls	
on	a	node	and	applies	a	set	of	rules	to	detect	abnormal	behavior.	Think	of	it	as	an	IDS	(Intrusion	
Detection	System)	specifically	tuned	for	container	and	cloud-native	environments.

What	can	Falco	detect?	For	example:

•	 A	shell	or	exec	into	a	container	(which	might	indicate	someone	got	inside	or	a	dev	is	
debugging).

•	 Reading	of	sensitive	files	within	a	container	(Falco	has	rules	for	files	like	/etc/passwd,	/etc/
shadow,	certain	token	paths).

•	 Unexpected	network	connections	(e.g.,	a	container	opening	a	port	it	usually	doesn’t,	or	
connecting	to	an	IP	on	a	blacklisted	range).

36Elevating Kubernetes Security at Fastly

•	 Changes	to	configuration	files	or	binaries	in	containers	or	on	the	host.

•	 Kernel	module	loading	(in	case	someone	tries	to	load	a	rootkit	via	a	container).

•	 Privilege	escalation	attempts	(like	calling	setns,	or	creating	device	files).

Falco	works	by	running	a	daemon	on	each	node	(with	the	ability	to	tap	into	the	kernel’s	system	call	
stream	via	eBPF	or	a	kernel	module)	and	uses	a	rules	file	to	filter	events.	When	a	rule	is	triggered,	
Falco	can	log	it	and	also	send	it	out	(to	stdout,	a	file,	or	via	something	like	Falcosidekick	to	various	
endpoints).

Falcosidekick:	This	is	a	side	tool	that	can	take	Falco	alerts	and	forward	them	to	many	outputs:	
Slack,	Teams,	Elasticsearch,	etc.,	which	is	useful	for	integrating	into	your	alerting	workflows.

Other Tools:

• Tracee (by Aqua Security):	Another	eBPF-based	detector	similar	to	Falco.

• Kube-hunter:	Not	a	runtime	detector,	but	an	active	scanner	you	can	run	(or	have	in	CI)	to	
find	common	misconfigurations.	It’s	like	a	pen-test	tool	for	K8s	(e.g.,	it	will	see	if	your	etcd	is	
openly	accessible,	or	if	the	dashboard	is	exposed).

• GuardDuty for EKS (AWS)	or	other	cloud-specific	anomaly	detection:	Cloud	providers	have	
their	own	services	that	analyze	cloud	trail	logs	and	network	traffic	for	suspicious	patterns	
(like	an	EC2	instance	(node)	making	odd	DNS	queries,	etc).

Tying it Together with Compliance
• NIST CSF Detect function: All	the	monitoring	and	Falco	stuff	falls	under	the	Detect	(DE)	
function	of	the	NIST	Cybersecurity	Framework.	Having	these	capabilities	helps	meet	controls	
about	continuous	security	monitoring.

• PCI Requirement 10:	If	you’re	under	PCI,	there’s	a	big	emphasis	on	logging	and	monitoring	all	
access	to	cardholder	data	and	detecting	anomalies.	Using	Kubernetes	audit	logs	and	Falco	to	
monitor	access	attempts	to	sensitive	data	in	containers	would	support	those	requirements.

• NSA/CISA Hardening:	The	guide	suggests	enabling	audit	logging	and	leveraging	threat	
detection	tools,	though	it	doesn’t	name	Falco,	it	aligns	with	that	idea	of	behavioral	monitoring.

• MITRE ATT&CK for Containers:	Monitoring	with	Falco	can	help	detect	many	of	the	
techniques	in	the	MITRE	ATT&CK	container	matrix	(like	Tactics	for	Execution,	Persistence,	
etc.).	For	instance,	the	“Execution	of	shell”	technique	or	“reading	/etc/passwd”	technique	
would	be	flagged	by	Falco	rules.

Conclusion
By	leveraging	the	MITRE	ATT&CK	framework	and	Elevation’s	layered	security	controls,	Fastly	
has	built	a	Kubernetes	security	strategy	that	is	proactive,	robust,	and	adaptive.	We’ve	combined	
preventative,	detective,	and	responsive	controls	to	ensure	threats	are	identified	and	neutralized	at	
every	stage,	keeping	our	Kubernetes	environments	resilient	and	secure.

