
Guide

Whitepaper

Elevating Kubernetes
Security at Fastly

2Elevating Kubernetes Security at Fastly

Table of Contents
03	 Introduction

04	 The Problem: A Complex and Expanding Threat Landscape

05	 Our Solution: The Elevation Ecosystem�

06	 Our Guiding Principles

07	 Threat Modeling for Kubernetes
07	 Identifying Threat Actors and Vectors

09	 Think Like an Attacker: Understanding the Kubernetes Kill Chain

10	 The Kubernetes Attack Lifecycle: From Initial Access to Impact

16	 Securing the Kubernetes Software Supply Chain: 	
 	 Images, Builds, and Deployment Pipelines
16	 Why Supply Chain Security Matters

20	 Kubernetes Network Security – Segmentation and Traffic Control
20	 The Basics of Kubernetes Networking

21	 Network Policies – Kubernetes Firewall

22	 Implementing Network Policies – Best Practices

23	 Beyond NetworkPolicy: Advanced Traffic Control

24	 Hardening Kubernetes Access: Authentication, Authorization, and Service Identity
24	 Kubernetes Authentication Basics

25	 Role-Based Access Control (RBAC)

27	 Protecting the API Server Endpoint

28	 Service Mesh Security – Enforcing Zero Trust for Workloads

29	 Workload Security – Hardening Pods and Containers
29	 Pod Security Standards and Policies

30	 Container Privileges and Linux Capabilities

31	 Filesystem and Device Permissions

32	 Seccomp, AppArmor, and SELinux

33	 Implementing and Verifying Workload Security Settings

34	 Monitoring and Threat Detection in Kubernetes
34	 Centralized Logging and Monitoring

35	 Runtime Threat Detection with Falco

36	 Tying it Together with Compliance

36	 Conclusion

2

3Elevating Kubernetes Security at Fastly

Introduction
Imagine waking up to find that your company’s entire operation has ground to a halt because an
attacker found a backdoor into your Kubernetes clusters. The chaos, the downtime, the potential
loss of customer trust — it’s a nightmare scenario for any organization. Now, picture a world where
such threats remain just that: a nightmare. At Fastly, we have implemented a fortified security
strategy to anticipate and mitigate risks effectively.

As we modernized and scaled our application platforms with Kubernetes, security became the
foundation of our design. Kubernetes’ immense power comes with its own set of challenges,
requiring a structured, proactive approach. As the Senior Principal Security Architect, I’ve
collaborated with our Cloud and Container Services team to elevate the security and compliance
posture of Fastly’s Kubernetes ecosystem.

This article explores Fastly’s security strategy and best practices, which form the foundation of
Elevation-Fastly’s Kubernetes Ecosystem, and delves into the Kubernetes threat landscape. We
discuss threat modeling, image security, network security and AuthZ/AuthN in Kubernetes, and our
approach to these.

About the Author
Roshan Daneshvaran has a diverse work experience in the field of
cybersecurity and information technology. Roshan is the founder of
Microstack, a company that provides strategic guidance and technical
expertise to enhance clients’ Cloud and Kubernetes posture and cybersecurity
resilience. Roshan prioritizes security and compliance across all services and
aims to modernize applications and infrastructure.

Roshan currently holds the position of Senior Principal Security Architect	
at Fastly, leading high-impact projects to secure cloud, platform, and	
container environments.

4Elevating Kubernetes Security at Fastly

The Problem:
A Complex and Expanding
Threat Landscape

Kubernetes has become the backbone of modern cloud-native architectures, providing unmatched
flexibility and scalability in managing containerized applications. However, this widespread
adoption also makes it a prime target for attackers. With Kubernetes adoption reaching 60%
among enterprises, and up to 96% among respondents in CNCF surveys (CNCF), its APIs, ingress
controllers, and service endpoints create multiple entry points for exploitation.

As Kubernetes continues to evolve, so do the tactics of malicious actors. Organizations must
embed security best practices such as strong access controls, continuous vulnerability scanning,
and real-time monitoring at every stage. At Fastly, we recognized these challenges and took
decisive steps to ensure our Kubernetes infrastructure is resilient and secure.

5Elevating Kubernetes Security at Fastly

Our Solution:
The Elevation Ecosystem

At Fastly, we see security not as an obstacle but as an enabler. By embedding security into
the very fabric of our development process, we ensure that it serves as a productive ally.
Through clear, “guardrailed” pathways, developers are empowered to focus on building amazing
applications, free from the burdens of complex security requirements.

We have established a secure Kubernetes environment called Elevation, built on open-source
and CNCF products, providing a robust foundation for both our critical control plane and internal
systems. By balancing innovation and resilience through a proactive, developer-centric approach
to security, Elevation empowers application teams to innovate without the constraints and
complexities of managing infrastructure. Our robust security strategy effectively addresses the
unique challenges of Kubernetes, ensuring Elevation’s resilience against emerging threats.

6Elevating Kubernetes Security at Fastly

Our Guiding Principles

1.	 Proactive Security: Catch Issues Early, Reduce Costs

Security is most effective—and cost-efficient—when addressed early in the software	
development lifecycle. At Fastly, security is embedded from the start, ensuring vulnerabilities	
and misconfigurations are caught before they become costly problems in production.	
By integrating security into CI/CD pipelines, we stay ahead of threats rather than reacting to them.	
Automated vulnerability scans, compliance checks, and policy enforcement ensure that every
container image and deployment meets rigorous security standards. This approach minimizes risk
while maintaining the speed and agility developers need to innovate. Security isn’t a blocker—it’s an
accelerator, enabling confident and secure development from day one.

2.	 Guardrails Over Tollgates: The Secure Path is the Easy Path

We make the secure way the easy way by providing automated, compliant, and opinionated workflows
that seamlessly integrate security into development. These guardrails act as predefined pathways,
ensuring security best practices are enforced without friction.	
Unlike traditional tollgates—manual checkpoints that slow progress—our approach automates security
checks and policy enforcement throughout the entire development and deployment process. This
creates a seamless experience where developers focus on building, while security is naturally woven
into their workflows. Innovation and security are not at odds—they work together.

3.	 Platform Engineering: Enabling Developers, Securing Infrastructure

We embrace Platform Engineering to remove the burden of infrastructure and security from
developers, allowing them to focus on building and shipping great products. The Platform teams
manage foundational infrastructure—VMs, container registries, Kubernetes infrastructure, CICD	
& observability systems, and security tooling—ensuring it remains resilient, scalable, and	
patched regularly.	
By clearly separating duties, we provide engineers with a reliable, self-service internal developer
platform that abstracts complexity while enforcing security best practices.

Elevating Kubernetes Security at Fastly 7

Threat Modeling
for Kubernetes

In any security journey, it’s important to know your enemy and the battlefield. Threat modeling
is the practice of identifying potential threats, attack vectors, and vulnerable points in a system
before an attack happens. We will outline the threat landscape for Kubernetes and examine the
sequence of steps an attacker might take to breach a cluster. By understanding how an attack
might progress, we can better plan defenses at each step.

Identifying Threat Actors and Vectors
Who might want to attack a Kubernetes cluster and why?

•	 Malicious external attackers: These could be cybercriminals looking to steal data, hijack
computing resources (for crypto mining), or disrupt services for ransom or political motives.
They typically start with no access and try to find a way in from the outside.

•	 Insider threats: A rogue or careless insider (a developer, admin, or even someone at your
cloud provider) could misuse their access. This might not always be intentional malice –
sometimes insiders accidentally expose credentials or misconfigure systems – but insider
access can bypass many external protections.

•	 Supply chain attackers: These target the components that you use to build or run your
cluster – for example, inserting malicious code into a container image or open-source library,
or compromising a CI/CD pipeline to push vulnerable deployments. In a Kubernetes context,

The following section of this article outline our best practices for building and securing a Kubernetes
environment, and details our approach to designing Elevation Security’s core components.

8Elevating Kubernetes Security at Fastly

a supply chain attack might involve a tainted Docker image or a malicious Helm chart that an
organization unknowingly deploys.	

Kubernetes, being a complex system, has a broad attack surface:

•	 Application-level vulnerabilities: The apps running in your containers might have bugs that
can be exploited (just as in traditional servers). For instance, a vulnerable web application
could give	
an attacker a foothold inside a container

•	 Container and runtime vulnerabilities: The container itself or the runtime (Docker, etc.)
might have weaknesses (like the infamous runC vulnerability that allowed container escape).
A container running as root or with excessive privileges is especially risky, as it might allow
an attacker to break out to the host.

•	 Misconfigurations: Perhaps the most common threat. Kubernetes configuration is powerful,	
but mistakes happen – e.g., leaving the	
Kubernetes Dashboard open with no password, setting overly broad permissions in RBAC,
using default credentials for some service, or not restricting public network access to the
control plane. Attackers often scan for clusters with	
such misconfigurations because they are low-hanging fruit.

•	 Credential compromise: If attackers obtain credentials (cloud API keys, kubeconfig files,
Docker registry passwords, etc.), they may authenticate as a legitimate user. This could
happen via phishing, reading credentials left in code repositories, or exploiting a pod that has
access to sensitive credentials.

•	 Denial of service (DoS): Attackers might aim to crash your cluster or apps, e.g., by
exhausting resources. This could be done by exploiting a weakness to cause a memory leak,
or simply by spamming your API server with requests. Kubernetes adds resiliency, but also
some new DoS angles (like spawning excessive pods if an attacker can trick the system).

•	 Underlying infrastructure: Don’t forget, Kubernetes ultimately runs on VMs or physical hosts.
If an attacker can compromise the underlying host (through a cloud vulnerability or insecure
SSH, etc.), they can subvert the cluster from beneath. Similarly, attacks on the network or
storage layers (DNS, load balancers, etc.) can impact Kubernetes.	

These threat vectors often chain together in an attack.

9Elevating Kubernetes Security at Fastly

Think Like an Attacker:
Understanding the
Kubernetes Kill Chain

Let’s step into the mindset of an attacker. Defenders often think in terms of controls, policies, and
configurations, but attackers see an interconnected system—one where a single weakness can
lead to a full-blown compromise.

The diagram below outlines a realistic Kubernetes attack scenario, showing how an attacker moves
from an initial foothold to achieving persistence, lateral movement, data theft, and eventually,
operational disruption. By understanding these tactics, we can better design defenses that don’t
just react but anticipate attacker behaviors.

At a high level, an attacker starts by exploiting a weakness—often a misconfigured or	
vulnerable public-facing service. From there, they escalate privileges, disable security controls,
steal credentials, and move laterally across the cluster. The goal is to extract valuable data or
disrupt operations, often by targeting persistent storage, which can be catastrophic in cloud-
native environments.

10Elevating Kubernetes Security at Fastly

Looking at this attack tree, we can identify key inflection points where defenders have
opportunities to detect and mitigate threats. Whether it’s hardening ingress points, securing
secrets, or enforcing network policies, thinking like an attacker allows us to strengthen Kubernetes
security in a methodical way.

As we progress through this article, we’ll map these adversarial techniques to structured security
framework MITRE ATT&CK and explore how to systematically defend against them. By the end, you
should not only recognize these attack patterns but also be able to construct similar attack trees,
applying this mindset to assess and fortify your Kubernetes environments.

The Kubernetes Attack Lifecycle: From Initial Access
to Impact
Let’s break down a typical Kubernetes attack into stages, from an attacker’s perspective, based on
the MITRE ATT&CK framework, which also serves as the basis for our Threat Modeling and Strategy
in securing Elevation. Not every attack will follow this exact order, but these stages are commonly
observed in successful compromises. We will also briefly note what defenders can do at each
stage.

1.	 Reconnaissance: The attacker collects information about the target. In the context of
Kubernetes, this may involve scanning the internet or the target’s network for open ports
that signify the presence of a Kubernetes component. In more advanced scenarios,
social engineering tactics may be employed. Here are some typical methods used for
reconnaissance:

•	 Port Scanning: The attacker scans the internet or internal network for open Kubernetes
components, such	
as an exposed API server, etcd database, or dashboard UI.

•	 Credential Hunting: Searching for leaked kubeconfig files, credentials in GitHub
repositories, or other misconfigurations that could expose Kubernetes secrets.

•	 Social Engineering: Gathering intelligence from social media, conference talks, or public
documentation to infer Kubernetes architecture and potential weaknesses.

Defender’s angle: Reduce your public footprint. Don’t expose the Kubernetes API to the
internet unless necessary (use VPNs or trusted IPs), avoid default ports when possible, and
monitor for scanning activity. Use tools like kube-hunter in a controlled manner to see what
an attacker might find during recon.

11Elevating Kubernetes Security at Fastly

2.	 Initial Access: This is where the attacker actually gains a foothold. It could happen in many
ways. They may employ a combination of the following techniques for getting an entry point:

•	 Application Exploit: Gaining access via an insecure containerized application (e.g.,
exploiting a web app vulnerability to execute code in a pod).

•	 Kubernetes Component Exploit: Taking advantage of a known vulnerability in the
Kubernetes API server, kubelet, or other cluster components.

•	 Misconfiguration Abuse: Exploiting weak security settings, such as an unprotected
Kubernetes Dashboard or overly permissive RoleBindings.

•	 Stolen Credentials: Using compromised kubeconfig files or leaked service account
tokens to authenticate to the cluster.	

Once they have some access – say, the ability to execute commands in one container, or
access to the API with limited rights – the kill chain has begun in earnest.

Defender’s angle: Apply strong perimeter defenses and hardening. This means keeping
Kubernetes updated (to fix known vulnerabilities), eliminating easy misconfigurations, and
using authentication everywhere. Also, minimal privileges: if an attacker lands in a frontend
web server container, that container should not have credentials or high privileges that
allow more damage easily.

Defender’s angle: This is where runtime security tools come in. Technologies like
Falco (an open source runtime security tool) can detect suspicious behavior (e.g., a shell
spawning inside a container that normally doesn’t use one, or unusual file access patterns).
Network monitoring might catch connections from a pod to an unknown external server
(for C2 communication). Admission controllers can also prevent execution of unapproved
workloads (e.g., don’t allow an untrusted image to be run, which could stop some
malicious deployments).

3.	 Execution: If the initial access didn’t already execute code (e.g., if they got credentials, now
they use them to run some malicious workload), this stage is about the attacker running their
code or commands inside the cluster. For instance, after getting into a container, they might
run a reverse shell to start controlling it interactively, or they might drop a malicious binary
(like a crypto miner) to run inside the pod. If they have API access, they might deploy a new
pod (perhaps a privileged one) to do their bidding.Application Exploit: Gaining access via an
insecure containerized application (e.g., exploiting a web app vulnerability to execute code in
a pod).

•	 Running Malicious Commands: Executing shell commands within a compromised pod to
gain further control.

•	 Deploying Malicious Workloads: Creating rogue deployments, DaemonSets, or CronJobs
to execute attacker-controlled code persistently.

•	 Abusing API Access: Using valid but excessive API permissions to modify running
workloads or escalate access.

https://github.com/falcosecurity

12Elevating Kubernetes Security at Fastly

4.	 Persistence: Skilled attackers, once in, will try to ensure they can stay in. In Kubernetes, if
they popped a single pod, that pod might be ephemeral (it might get restarted or replaced).
So they might want to create a backdoor for persistence. Examples:

•	 Backdoor Accounts: Creating high-privilege service accounts with secret tokens for
long-term access.

•	 Malicious DaemonSets: Deploying workloads that restart persistently across nodes,
making removal difficult.

•	 Scheduled Jobs: Using CronJobs to execute malicious actions at regular intervals.

Defender’s angle: This is tricky – the best approach is to prevent getting to this stage.
However, monitoring changes in the cluster can help; for example, suddenly seeing a new
high-privilege service account or an unfamiliar deployment in the cluster should raise red
flags. Kubernetes audit logs and tools that can baseline your cluster state (like configuration
management tools) are useful. In cloud-managed clusters, ensure CloudTrail (AWS) or
equivalent logs for API calls are enabled to catch creation of new roles or resources.

Defender’s angle: Principle of least privilege is key. Ensure that if one part of your system is
compromised, it can’t easily escalate. Concretely: run containers as non-root with minimal
Linux capabilities, avoid hostPath volumes (or restrict them via Admissiom Controllers), lock
down RBAC so service accounts have only what they absolutely need.

5.	 Privilege Escalation: The attacker attempts to gain higher-level privileges than they initially
had. If they started in a low-privilege container, they might look for ways to become root in
the container or escape to the node. Kubernetes-specific escalation might involve:

•	 Container Escape: Exploiting a misconfigured or vulnerable container to gain access	
to the host.

•	 Service Account Abuse: Using an overprivileged service account to create pods or
access cluster-wide secrets.

•	 API Server Exploitation: Taking advantage of Kubernetes vulnerabilities	
(such as CVE-2018-1002105) to escalate privileges via the kubelet API.

13Elevating Kubernetes Security at Fastly

6.	 Defense Evasion: Once inside the cluster, an attacker will attempt to evade detection to
maintain access and continue their objectives undisturbed. This involves concealing their
activities, bypassing monitoring tools, or disabling security controls. In Kubernetes, common
evasion techniques include:

•	 Disabling Logging and Monitoring: Attackers with API or node access may attempt to
disable Kubernetes audit logging, delete logs, or tamper with monitoring agents (e.g.,
killing a Falco DaemonSet or modifying Prometheus alert rules).

•	 Masquerading as Legitimate Workloads: Instead of deploying obviously malicious
containers, an attacker might modify existing Deployments, inject malicious sidecars, or
use kubectl exec to blend in with normal operations.

•	 Process Hiding and Kernel-Level Manipulation: If an attacker gains privileged access
to a node, they may use techniques like LD_PRELOAD hijacking, eBPF-based process
hiding, or modifying cgroups to conceal their activity.

•	 Tampering with Security Policies: Attackers might edit or delete Network Policies, Pod
Security Standards, or Admission Controllers to relax security restrictions without raising
immediate alarms.

•	 Cleaning Up Artifacts: To cover their tracks, attackers may remove container file system
modifications, delete evidence of executed commands from .bash_history, or restore
modified Kubernetes resources to their original state.

Defender’s angle: Ensure logs are stored externally and monitor for sudden gaps or
deletions. Restrict API and RBAC permissions to prevent attackers from disabling security
tools or modifying defenses. Runtime security tools like Falco can catch suspicious activity,
while network policies and file integrity monitoring help detect tampering. The goal is to
make evasion difficult, increasing the chances of early detection.

14Elevating Kubernetes Security at Fastly

Defender’s angle: Network segmentation and strict RBAC are the primary defenses.
Network Policies should limit which pods can talk to which, making it harder for an attacker
in one compromised pod to reach others. Also, not all pods should be able to talk to
control plane components except through the API server. If an attacker has compromised
a container, having strong isolation between namespaces (and using separate credentials
for different applications) can limit what they can do next. Monitoring lateral movement can
be done by network flow logs or IDS systems, but those can be complex in Kubernetes –
however, unusual connections (like a frontend pod suddenly querying a database it never
touched before) might be detectable.

Defender’s angle: Secrets management is vital – Encrypt secrets at rest (so even if etcd
is accessed, it’s not plain text), and strictly control access to them (RBAC and possibly
external secret managers like HashiCorp Vault). Also, avoid putting secrets in environment
variables.

7.	 Lateral Movement: Now the attacker has some level of access, perhaps even high privileges
on one node or in one namespace, and they want to move to other parts of the environment.
They might:

•	 Network Scanning: Mapping internal services by probing open ports within the cluster.

•	 Service Account Abuse: Using an overprivileged service account to access different
namespaces or workloads.

•	 Node Compromise: If an attacker gains access to a node, they may attempt to exploit the
kubelet API or move laterally across other nodes.

8.	 Credential Access: The attacker will search for secrets, credentials, and configuration info
to further their goals. They might attempt:

•	 Reading Kubernetes Secrets: If access allows, attackers may dump secrets to find API
keys, database passwords, or cloud credentials.

•	 Extracting Service Account Tokens: Using a pod’s automatically mounted service
account token to authenticate with the Kubernetes API.

•	 Harvesting Config Files: Checking environment variables and mounted config files for
sensitive data.

15Elevating Kubernetes Security at Fastly

9.	 Discovery

•	 Enumerating API Resources: Using kubectl or API queries to list all services, routes,	
and workloads.

•	 Probing Network Services: Scanning for internal services with open ports and	
weak authentication.

•	 Examining Cluster Configurations: Looking for misconfigurations, unused service
accounts, or exposed endpoints.

Defender’s angle: You cannot prevent an attacker from querying information they are
authorized to access, but implementing the principle of least privilege ensures that they
cannot access data they shouldn’t. Audit logging can help track unusual behavior, such
as an individual listing a large number of resources in an atypical manner. It’s important to
restrict Role-Based Access Control (RBAC) access to API calls and monitor for excessive
resource enumeration. Additionally, network segmentation can help prevent attackers from
scanning the cluster freely.

Defender’s angle: By this stage, if all earlier defenses failed, you’re in damage control.
Your monitoring and alerting should catch unusual outbound traffic or large data transfers.
Egress controls can help (limiting which pods can talk out to the internet, or using DLP
systems to monitor data egress). Regular backups of data and cluster state are essential so
you can recover if things are wiped or ransomed. And having an incident response plan is
key to containing the damage.

10.	 Impact (Exfiltration or Damage): Finally, the attacker achieves their goal, which could be:

•	 Data Exfiltration: Copying out sensitive data (user data, intellectual property). For
example, exporting database contents, or even making an entire etcd backup if they have
that level of access. They might send data out over the internet from a pod or use cloud
APIs if credentials are available (e.g., accessing an S3 bucket).

•	 Cryptojacking (Resource Theft): Installing crypto mining software across pods or nodes
to harness your compute for their gain

•	 Ransom / Destruction: Encrypting data or deleting Kubernetes resources to cause denial
of service, then demanding ransom. Or simply disrupting services as an end in itself.

•	 Cluster Takeover: Using your cluster as part of a botnet or to pivot into your other
infrastructure (maybe from Kubernetes into your corporate network if not isolated).

16Elevating Kubernetes Security at Fastly 16

Securing the
Kubernetes Software
Supply Chain: Images, Builds,
and Deployment Pipelines

The first link in our Kubernetes security chain is the software we deploy. If the applications or
containers themselves are malicious or vulnerable from the start, it’s game over – the attack
doesn’t even need to break in, because we invited it in. This is why supply chain security is critical.
In a Kubernetes context, supply chain security focuses on container images, build processes, and
deployment pipelines.

Why Supply Chain Security Matters
Consider that a typical container image might be built on a base image (like Debian or Alpine Linux)
and include dozens of libraries. Each of those could have known vulnerabilities. Attackers know
this, and they actively search for deployments running outdated images that they can exploit. Even
more insidious, attackers may hide malware in images that appear benign – for example, a public
Docker Hub image named similarly to a popular one, hoping someone will use it by mistake.

Real-world example: In 2018, a security researcher found several malicious images on Docker Hub
that had been downloaded millions of times. They contained cryptominers that would start mining
cryptocurrency as soon as the container ran, unknowingly costing the users (and their cloud
providers) money. This kind of attack doesn’t exploit a vulnerability in Kubernetes itself – it exploits
trust. If you trust an image from an unverified source, you might be running an attacker’s code
inside your cluster.

Another vector is the build pipeline. If an attacker can compromise your CI/CD system or the
process of building and pushing images, they can insert backdoors. A famous example outside
containers is the SolarWinds incident, where attackers compromised the build system to insert

17Elevating Kubernetes Security at Fastly

malicious code. In container land, that could translate to pushing a malicious layer into your image
or stealing credentials from a CI job to later push a fake image.

Supply chain attacks are a big enough concern that even government agencies emphasize them.
supply chain risks are one of the top three sources of compromise highlighted by NSA/CISA
Kubernetes guidance

The takeaway: we need to ensure that the images and configurations we deploy to
Kubernetes are as secure and verified as possible.

Best Practices for Container Image Security
1.	 Use Trusted Base Images: Start your Dockerfiles FROM well-known and trusted base
images. Official images from Docker Hub or your OS vendor (like the official Node.js or
Python images, or distroless base images from Google) are usually better maintained. Be
cautious with random images published by unknown users.

2.	Minimize Image Contents: The more software in your image, the more potential
vulnerabilities. Follow a minimalistic approach:

•	 Use slim or alpine variants if possible (e.g., python:3.11-slim instead of full
python:3.11).

•	 Remove unnecessary packages and dependencies. If you only need a single binary,
consider using scratch or distroless images which contain almost nothing except your
app and minimal runtime.

•	 Multi-stage builds can help produce lean final images (build in one stage, then copy only
the needed artifacts into a small runtime image).

This reduces the attack surface. NIST recommends using minimal base images and avoiding
unnecessary software

3.	 Regularly Scan Images for Vulnerabilities: Incorporate vulnerability scanning into your
development pipeline. There are many tools (both open-source and commercial):

•	 Trivy (open source by Aqua Security) – scans container images for known vulnerabilities
in OS packages and language-specific dependencies.

•	 Anchore Engine or its CLI tools like Syft/Grype – open source image scanners.

•	 Clair – an open source scanner that can integrate with registries like Quay.

•	 Snyk, Docker Hub’s built-in scanner, etc. – there are also services that scan images 	
in registries.

Scanning should be done before deployment (e.g., as part of CI), in addition to runtime. If critical
vulnerabilities are found, fix them (update the package or image). Some organizations enforce
policies to block deploying images with high-severity vulnerabilities until they’re addressed. The
NSA/CISA guidance actually suggests using an admission controller to prevent vulnerable images
from running – meaning Kubernetes would reject a pod if its image hasn’t passed a vulnerability
scan (though implementing that requires some pipeline integration).

https://kubernetes.io/blog/2021/10/05/nsa-cisa-kubernetes-hardening-guidance/#:~:text=The%20guidance%20highlights%20the%20following,three%20sources%20of%20compromises
https://kubernetes.io/blog/2021/10/05/nsa-cisa-kubernetes-hardening-guidance/#:~:text=The%20guidance%20highlights%20the%20following,three%20sources%20of%20compromises

18Elevating Kubernetes Security at Fastly

4.	 Update Base Images and Dependencies Frequently: New vulnerabilities appear all the time.
If you built an image six months ago and haven’t updated it, it likely has known issues now.
Establish a routine to rebuild images with updated base images and libraries. Dependabot
or similar tools can alert on outdated dependencies even in container contexts. Also track
security advisories for your base images.

5.	 Verify Image Provenance (Image Signing): To ensure that the image you deploy is exactly
the one you intended and not tampered with, use image signing. Docker has a content
trust feature (Notary v1) and the modern approach is using Sigstore Cosign to sign images.
This involves generating a cryptographic signature for an image and then configuring your
cluster (or deployment pipeline) to verify that signature.

•	 For example, you can sign an image with Cosign, and then an admission controller (like
an OPA Gatekeeper policy or Kyverno rule, or Cosign’s own webhook) can check that
any image being launched is signed by your trusted key. This prevents an attacker from
tricking you into running an image they built.

•	 While implementing signing can have setup overhead (managing keys, etc.), it’s
increasingly recommended for production environments, especially where compliance
requires ensuring software integrity.

6.	 Use Private Registries and Access Controls: Host your images in a private registry that

you control (or a trusted cloud registry like ECR, GCR, etc., with proper permissions). Public
registries are fine for base images and open-source components, but your custom app
images should be in a private repo. Lock down who can push images to the registry, and use
unique, strong credentials for the registry. This reduces the risk of an attacker pushing a
malicious image with the same name as one of your apps.

7.	 Enforce Image Policies in Kubernetes: Kubernetes has some built-in and add-on
mechanisms:

•	 The AlwaysPullImages admission plugin (when enabled on the API server) forces every
new pod to pull its image from the registry, rather than using a potentially cached copy
on a node. This ensures that if someone had somehow planted an image on a node with
the same name, it won’t be used. It also means you always get the latest version of the
image (if you updated it).

•	 You can use Open Policy Agent (OPA) Gatekeeper or Kyverno to write policies like
“only allow images from my registry” or “disallow the :latest tag in images” (because
using :latest is discouraged – it’s better to use an explicit version tag to avoid
unpredictability).

•	 Kubernetes’ Pod Security Standards (baseline/restricted) also cover some aspects like
not running as root, which is more runtime, but image policy can tie into that (ensuring
USER in Dockerfile, etc).

By combining these, you ensure that even if a developer accidentally tries to run randomuser/
ubuntu:latest, the system will reject it because it’s not from your approved repository or it’s 	
not signed.

19Elevating Kubernetes Security at Fastly

8.	 Secure Build and CI/CD Systems: This goes slightly beyond Kubernetes itself, but since
images come through CI/CD:

•	 Lock down CI credentials (don’t embed kubeconfig with cluster-admin in plaintext in CI
scripts, for example).

•	 Ensure the CI environment is patched and monitor it – an attacker who gets into CI could
manipulate your manifests or images.

•	 Use ephemeral CI runners for sensitive jobs, so there’s no long-lived environment to
infect.

•	 If using Kubernetes to deploy (like GitOps or Flux, or Argo CD), ensure those deployment
pipelines are also secured (Argo should have RBAC, etc.).

•	 Consider employing tools to scan your Kubernetes manifests (YAML or Helm charts) for
misconfigurations before they are applied. Tools like conftest, kube-score, kube-linter,
or Checkov can automate static analysis of configs (ensuring, for instance, you didn’t
accidentally set allowPrivilegeEscalation: true or leave a debug port open).

20Elevating Kubernetes Security at Fastly

Kubernetes
Network Security
– Segmentation and
Traffic Control

Kubernetes networking allows all pods and services to talk to each other by default, which is
convenient for development but potentially dangerous in production. If an attacker compromises
one pod, they could move laterally by connecting to other pods, including those in different
namespaces, unless we put guardrails in place. In this chapter, we focus on network security for
Kubernetes: how to restrict traffic between pods (and to/from the cluster) using network policies
and other mechanisms, and how to introduce layers like service mesh for zero-trust networking.

The Basics of Kubernetes Networking
Out of the box, Kubernetes imposes a flat network:

•	 Every pod gets an IP address, and by default pods can communicate with each other by IP
across the cluster, regardless of namespace or which node they’re on​. There is no built-in
isolation; network isolation is a responsibility of the network plugin via NetworkPolicies	
(if used).

•	 Services provide stable IPs and load balancing to pods, but from a network perspective, they
typically don’t restrict source/destination (unless using specific Service types or external
firewall rules).

•	 The Kubernetes kube-proxy handles routing for Services (using iptables or IPVS rules on
nodes). It doesn’t filter traffic; it just ensures it goes to the right pod.

•	 By default, Kubernetes doesn’t come with a firewall between pods. It assumes a trust zone
(the cluster network).

21Elevating Kubernetes Security at Fastly

This means:

•	 If Mallory gains access to one pod, she can scan the entire cluster’s pod IP range and likely find
and connect to other pods (e.g., database pods, internal services) unless additional measures are
in place.

•	 All pods can also typically reach the internet (for updates, etc.), unless restricted by cloud-level
egress rules or network policies.

Network Policies – Kubernetes Firewall
NetworkPolicy is a Kubernetes resource (in the networking.k8s.io API group) that acts like a firewall
policy for pods at the IP level (Layer 3/4). Network policies allow you to specify which connections are
allowed to or from a set of pods; any traffic not explicitly allowed by any applicable policy is blocked
(default deny).

Important points:

•	 NetworkPolicies are namespaced. They only govern pods within their namespace (they can,
however, allow/deny traffic to/from pods in other namespaces if selected).

•	 They are implemented by the CNI plugin (Calico, Cilium, Weave, etc.). If your cluster’s network
plugin doesn’t support network policies, creating the resource will do nothing. Most managed
Kubernetes offerings have network policy support (either via their default CNI or an option to
enable one like Calico).

•	 A NetworkPolicy can have rules for ingress (incoming to pods) and/or egress (outgoing from
pods). You can restrict one or both.

•	 They work by selecting pods via labels (similar to how Services or Deployments select pods).

By default, if you don’t create any NetworkPolicy, it’s as if there is an allow-all policy (i.e., no
restrictions). Once you create one or more policies that select a pod, any traffic not allowed by those
policies is blocked. To effectively lock down, one common pattern is to create a “default deny” policy
for a namespace (which selects all pods but allows nothing), then create specific allow policies for the
traffic you need.

Example scenario: In a typical microservice app, you might want:

•	 The frontend pods to be allowed to talk to the backend API pods.

•	 The backend API pods to talk to a database service.

•	 But you might want to prevent the frontend from directly querying the database, or one
microservice from talking to another if it’s not needed.

•	 Also, pods from team A’s namespace should likely not talk to pods in team B’s namespace (if
those are unrelated applications), unless via some public interface.

NetworkPolicies can enforce all that, effectively creating micro-segments in your cluster’s network.

22Elevating Kubernetes Security at Fastly

Key fields in a NetworkPolicy:

•	 podSelector: which pods the policy applies to (often you select by app label or just 	
 everything in the namespace).

•	 policyTypes: Ingress and/or Egress.

•	 ingress: list of ingress rules, each rule can allow traffic from certain peers (specified by
pod 	
 labels, namespace labels, and/or IP blocks) to certain ports/protocols.

•	 egress: similarly, rules for outgoing traffic.

•	 If a pod is selected by a policy and no rule matches a particular traffic, it’s denied. If a pod	
 is not selected by any NetworkPolicy, it’s unaffected (all traffic allowed).

Implementing Network Policies – Best Practices
•	 Start with Namespace Isolation: If you have distinct applications or environments in separate
namespaces, consider a default deny policy for each, so that cross-namespace traffic is
prohibited unless explicitly allowed. You can label namespaces and use those labels in
network policy selectors to allow only specific cross-namespace communications.

•	 Use a Default Deny (Isolation) Policy:
E.g.,

kind: NetworkPolicy

metadata:

 name: default-deny

 namespace: prod

spec:

 podSelector: {} # selects all pods in “prod”

 policyTypes:

 - Ingress

23Elevating Kubernetes Security at Fastly

Beyond NetworkPolicy: Advanced Traffic Control
Service Mesh (mTLS and Authorization): While NetworkPolicies work at IP/port level, a service
mesh (like Istio, Linkerd, Consul Connect) operates at the application layer. Service meshes can
encrypt traffic between services with mutual TLS (so even if someone sniffs the network, they
see only encrypted data). They can also do request-level authorization (e.g., service A is allowed
to call service B’s endpoints, but not service C). This is an additional layer (and adds complexity/
resources), but in high-security environments, it ensures zero-trust even within the cluster – every
service authenticates to every other service on each call.

Ingress/Egress Controllers: For traffic entering or leaving the cluster, ensure you use a secure
Ingress controller or API Gateway. For example, an NGINX ingress controller should be configured
to only allow TLS, use security headers, etc. For egress, some companies route all outbound traffic
through a proxy for monitoring. Kubernetes doesn’t have a built-in egress gateway by default (Istio
provides one, or you implement at network level).

DNS Policies: Kubernetes doesn’t natively restrict DNS by policy, but some CNI plugins (like Cilium)
let you create rules based on DNS names for egress (e.g., only allow access to *.mycompany.com).
Also, ensure that your CoreDNS (the internal DNS server) is not accessible from outside and is
patched (there have been vulnerabilities in CoreDNS in the past).

Network Segmentation Outside the Cluster: Ensure the cluster’s nodes or VPC are segmented
from your other infrastructure appropriately. For example, if your Kubernetes cluster is in the same
flat network as your database servers not under Kubernetes, a compromised pod might directly try
to hit a database. Better to put Kubernetes nodes in their own subnet/VPC and tightly control what
they can reach outside of Kubernetes context (some access might be needed, e.g., to a central
database, but then use cloud security groups or firewall rules to only allow the Kubernetes master
IPs or specific pod CIDRs).

24Elevating Kubernetes Security at Fastly

Hardening Kubernetes
Access: Authentication,
Authorization, and
Service Identity

Kubernetes’ power is concentrated in its API server – whoever (or whatever) can send commands
to the API server effectively controls the cluster. Thus, securing access to the Kubernetes API is
one of the most critical aspects of cluster defense. In this section, we discuss how Kubernetes
authentication and authorization work, best practices for Role-Based Access Control (RBAC), and
how to ensure that only the right people and services have the minimum permissions they need.

Kubernetes Authentication Basics
Authentication is about confirming who you are (or what entity you are). Kubernetes supports
multiple authentication methods:

•	 Client Certificates: When Kubernetes is set up (via kubeadm or in managed services), each
component and each admin user can have X.509 certificates. For example, you might have a
certificate for user “admin”. Kubectl uses these (via the kubeconfig file) to authenticate to the
API server. Certificates are verified by the API server’s CA.

•	 Bearer Tokens: These are like API keys. Kubernetes historically could use static tokens set in
a file (not recommended now) or dynamically issued tokens. Service accounts (more on them
soon) use bearer tokens – essentially long random strings that are presented with requests.

•	 Authentication Plugins: You can configure the API server to use an external authentication
provider. A common practice in enterprises is to use OIDC (OpenID Connect) to integrate with
an identity provider (like Keycloak, Dex, or cloud IAM services). That way, users can log in
with corporate credentials (SSO) and get a token for Kubernetes.

•	 Cloud Provider IAM: Some managed solutions allow tying into their IAM. For instance, AWS
EKS can allow IAM entities to authenticate and then maps them to Kubernetes roles via a
config map. Similarly, Azure and GCP have their mechanisms.

25Elevating Kubernetes Security at Fastly

By default, in most clusters you interact with, you probably use a kubeconfig file that contains
either a client certificate or a token (or it might exec an external auth command to get a token via
OIDC). As an admin, you should ensure there are no unused or overly privileged credentials floating
around. Disable basic authentication (username/password) and legacy token file auth if they’re not
needed.

One important built-in account is kubernetes-dashboard (if you have the Dashboard installed) –
ensure that is secured (the Dashboard now doesn’t have full admin rights by default, but earlier
it was a risk). Also, if using kubeconfig files, treat them like passwords; don’t accidentally commit
them to git repositories (attackers actively search GitHub for kubeconfigs or cloud keys).

Role-Based Access Control (RBAC)
Once a user is authenticated, Kubernetes needs to decide what that user (or service account)
is allowed to do. This is authorization. Kubernetes uses RBAC as the main mode (it can also be
configured for ABAC or other modes, but RBAC is the standard).

RBAC has a few key concepts:

•	 Role and ClusterRole: A Role defines a set of permissions (verbs on resources) within a
specific namespace. For example, a Role can allow “get, list, watch” on pods in the dev
namespace. A ClusterRole is similar but not bound to a namespace (it can give access to
cluster-wide resources like nodes, or be used in any namespace).

•	 RoleBinding and ClusterRoleBinding: These bind a Role (or ClusterRole) to a user, group,
or service account. A RoleBinding is within a namespace (e.g., bind a user to a Role in
that namespace), and a ClusterRoleBinding can grant cluster-wide access (or access to a
ClusterRole’s permissions across all namespaces).

Service Accounts: These are special accounts meant for applications (pods) to use. Every
namespace has a default service account, and pods use it by default (unless you specify a different
service account in the pod spec). Service accounts have associated tokens that pods can use to
call the API server (for example, a pod might list other pods or read a ConfigMap if it has rights).
Managing what service accounts can do via RBAC is crucial to limit what a compromised application
can do.

RBAC Best Practices:

•	 Least Privilege: Follow the principle of least privilege religiously. Only give users or service
accounts the minimum permissions they need to do their job (Role Based Access Control
Good Practices | Kubernetes). For example, if an application only needs to read from a
specific ConfigMap in its namespace, don’t give it a role that can read all ConfigMaps or,
worse, all Secrets.

•	 Use Namespaced Roles where possible: If someone only needs access in one namespace,
scope a Role to that namespace instead of using a ClusterRole. ClusterRoles should be
reserved for cluster-wide operations or for convenience when you truly need the same
access in all namespaces.

https://kubernetes.io/docs/concepts/security/rbac-good-practices/#:~:text=Least%20privilege
https://kubernetes.io/docs/concepts/security/rbac-good-practices/#:~:text=Least%20privilege

26Elevating Kubernetes Security at Fastly

•	 Avoid Wildcards in Permissions: Rather than giving “*” access to all resources or all verbs,
enumerate only the specific ones needed (Kubernetes RBAC: Best Practices & Examples -
Kubecost). For instance, an app might need read access to ConfigMaps, but not to Secrets –
don’t just give it access to all configmaps, secrets in one rule if Secrets are not required.

•	 Don’t Use Cluster-Admin Lightly: The built-in ClusterRole cluster-admin basically gives
full control. Only bind this to superuser accounts. If a user just needs to debug pods in all
namespaces, consider a custom ClusterRole that lists pods in all namespaces, rather than
cluster-admin.

•	 Service Account Isolation: Create separate service accounts for different deployments,
especially if they need different levels of access. By default, the service account token is
mounted in pods – if they get compromised, the attacker gets that token. If all pods use the
default service account which has broad permissions, that’s a big risk. Instead, give each app
its own service account with limited RoleBinding. If an app doesn’t need to call the API at all,
you can even set automountServiceAccountToken: false in its pod spec to not give it a
token at all.

•	 Group Management: If you have many users, manage them via groups in your identity
provider and bind the group to roles. For instance, a “developers” group might get view
access on a dev namespace, whereas an “ops” group gets broader access. This way, adding
a user to the appropriate group in your SSO automatically gives them the right access in
Kubernetes.

•	 Periodic Audits: Regularly review who has what access. Kubernetes doesn’t have a built-
in report for this, but you can use commands like kubectl get rolebindings --all-
namespaces and kubectl describe clusterrolebindings to see mappings. There
are also tools (like Fairwinds RBAC Lookup, or OpenShift’s oc adm policy who-can) to help
enumerate access. Prune any accounts or bindings that are no longer needed (for example, if
someone left the team, remove their account binding).

•	 Beware of Impersonation Permissions: Kubernetes RBAC has an ability where a user can be
allowed to “impersonate” another user or service account. Don’t grant impersonation (verbs
like “impersonate” on users) unless required, as it could allow someone to assume a more
privileged identity.

•	 Default Lockdown: By default, new clusters have no default RoleBindings giving broad
access to normal users (in fact, most clusters start with an empty RBAC, meaning unless
you configure it, no one except admin cert-holders can do anything). That’s good – you then
deliberately grant access. In older versions or some setups, you might have had a “cluster-
admin” binding for the system:authenticated group (meaning every authenticated user had
full run of the cluster!) – ensure that’s not the case.

https://www.kubecost.com/kubernetes-best-practices/kubernetes-rbac-best-practices/
https://www.kubecost.com/kubernetes-best-practices/kubernetes-rbac-best-practices/

27Elevating Kubernetes Security at Fastly

Protecting the API Server Endpoint
RBAC helps control what an authenticated entity can do. But we also should control who can even
reach the API. Some considerations:

•	 Network Access: Ideally, the Kubernetes API server should not be open to the entire internet.
In cloud setups, use security groups / firewalls to restrict the source IP ranges that can talk to
the API (maybe only your office network, your VPN, etc.). Attackers can’t exploit an API they
can’t even connect to.

•	 Enable Audit Logging: This isn’t access control per se, but it’s crucial for visibility. Turn on API
server audit logs (with a reasonable policy) so you have an audit trail of who did what. Many
compliance regimes (like PCI, NIST 800-53) require auditing administrative actions. Audit
logs will show if someone tried to perform actions they weren’t allowed to, or if a certain
account suddenly did something suspicious (like reading all secrets).

•	 Avoid Anonymous Access: Kubernetes used to allow requests with no auth to be treated as
“anonymous” user. Ensure --anonymous-auth=false is set on the API server (most modern
setups do this by default, or at least RBAC denies anonymous actions). Similarly, disable
--insecure-port (an old non-TLS port for API, which is gone in recent versions).

•	 Protect etcd: This is slightly aside from API, but the etcd database behind the API is
essentially another way to get cluster info. Make sure etcd requires authentication (certs)
and is not externally reachable. If an attacker directly accessed etcd (which should be on a
protected network segment or localhost), they could read or write cluster state bypassing the
API’s authz checks.

28Elevating Kubernetes Security at Fastly

Service Mesh Security – Enforcing Zero Trust for
Workloads
While RBAC and network policies control access at the Kubernetes API and namespace levels, they
do not automatically encrypt traffic between workloads or verify service identities at runtime. This
is where a service mesh (such as Istio, Linkerd, or Consul) provides an additional layer of security
by enforcing mTLS (mutual TLS), workload identity, and fine-grained authorization policies for
service-to-service communication.

Mutual TLS (mTLS) – Encrypting Pod-to-Pod Traffic

By default, network traffic inside a Kubernetes cluster is unencrypted. Attackers who	
compromise a pod or intercept traffic may eavesdrop on sensitive data or perform	
Man-in-the-Middle (MITM) attacks.

•	 A service mesh automates TLS encryption for all service-to-service communication (not just
API-to-service).

•	 Even if attackers move laterally inside the cluster, they cannot decrypt intercepted traffic.

•	 Example: Istio and Linkerd automatically inject sidecar proxies to establish mTLS between
workloads.

Workload Identity – Moving Beyond IP-Based Security

Traditional Kubernetes NetworkPolicies rely on IP-based restrictions, which can be bypassed if an
attacker gains access to an allowed pod. Service mesh enforces identity-based security instead.

•	 Each workload receives a cryptographic identity (e.g., SPIFFE IDs in Istio).

•	 Service-to-service authentication happens at Layer 7 (not just IP-based network controls).

•	 Example: Even if an attacker spoofs an IP or moves laterally, they cannot impersonate a valid
workload identity unless they compromise the mesh itself.

Fine-Grained Authorization – Beyond RBAC

•	 RBAC ensures users have correct Kubernetes API permissions, but it does not control which
microservices can talk to each other.

•	 Service meshes enable service-to-service RBAC-like policies using authorization policies.

•	 Example: Istio Authorization Policies define which workloads can call which services based
on identity, JWT tokens, HTTP headers, etc.

•	 This prevents attackers from pivoting between microservices, even if they breach one.

29Elevating Kubernetes Security at Fastly

Workload Security –
Hardening Pods and
Containers

Even with strong perimeter defenses, we must assume that an attacker might eventually run
code in a container (via a software vulnerability or misconfiguration). Workload security is about
limiting what an attacker can do inside a compromised container. This means configuring pods and
containers to run with the least privileges necessary, and using features of Kubernetes and Linux to
sandbox and restrict their capabilities. In this section, we’ll cover how to harden your pods: avoiding
running as root, dropping Linux capabilities, using read-only filesystems, and more.

Pod Security Standards and Policies
Kubernetes has a built-in concept of Pod Security Standards (PSS) which defines three levels:

•	 Privileged: Essentially no restrictions, pods can do all sorts of host-level access (should be
avoided except in special cases).

•	 Baseline: Restricted to prevent known bad practices, but still allows some flexibility. E.g.,
baseline disallows privileged containers, but might allow running as root if needed.

•	 Restricted: Tightest level – enforce nearly all best practices (must run as non-root, no host
namespace access, etc).

As of Kubernetes v1.25, PodSecurity admission is enabled by default to replace the deprecated
PodSecurityPolicy (PSP). You can enforce PSS by namespace:

•	 By adding labels to a namespace like pod-security.kubernetes.io/enforce: restricted
(and similar for audit or warn levels), the API server will reject any pod that doesn’t meet the
restricted standard in that namespace.

30Elevating Kubernetes Security at Fastly

•	 For example, if a developer tries to deploy a pod that runs as root or has a privileged flag in a
restricted namespace, they’ll get a rejection.

Our recommendation: aim for the restricted profile on all production namespaces. If something

truly needs to be looser, you can use baseline on a case-by-case basis (or a separate namespace
for that component).

If your cluster is older or if you prefer more control:

•	 PodSecurityPolicy (PSP): was an older mechanism where you create PSP objects and grant
users permission to use them. PSP is removed in 1.25+, but some environments (1.23 or
earlier, or OpenShift’s SCC which is similar) may still use it. The concepts are similar (restrict
host mounts, user, etc).

•	 Custom Policies via Gatekeeper/Kyverno: You can also enforce custom rules using policy
engines. For instance, using Open Policy Agent (OPA) Gatekeeper with a policy template to
disallow containers running as root, or ensure specific labels, etc. Kyverno (another policy
engine) can also mutate or block pods that don’t meet criteria.

Container Privileges and Linux Capabilities
User IDs (Don’t run as root): By default, if you don’t specify a user, containers run as UID 0 (root)
inside the container. While this root is namespaced (it’s not root on the host unless combined
with other privileges), it’s still dangerous. If the container process escapes or accesses the host
somehow, and it’s root, you’ve essentially given the attacker root on the host. The NSA warns that	
a container running as root that escapes can provide complete control of the worker node 	
(A Closer Look at NSA/CISA Kubernetes Hardening Guidance | Kubernetes).

Best practice:

•	 In your Dockerfile, use a non-root USER (like USER 1000 or a specific user).

•	 Or at least, in the Kubernetes pod spec, set securityContext.runAsUser to a non-zero UID
and possibly runAsNonRoot: true (which tells Kubernetes to refuse to run the container if
the image doesn’t have a non-root user).

•	 Also set securityContext.runAsGroup if needed for file permissions, and consider
fsGroup for shared volume permissions.

By running as a less-privileged user, even if an attacker breaks out of the application, they face
another hurdle for host compromise (they might need a kernel exploit to elevate privileges). It also
limits damage in multi-container pods (one container might not be able to tamper with another’s
files if permissions are set right).

Privileged flag: Pods (actually containers) have a boolean flag securityContext.privileged.
If true, that container essentially has all the capabilities of the host’s root (it’s as if it’s not in
a namespace for certain restrictions). Privileged containers can modify the host (load kernel
modules, access all devices, etc). You should almost never need privileged in a normal app. It’s
used for low-level system daemons or debugging. Keep it off (false) for all application pods. Many
admission policies will outright forbid privileged containers cluster-wide.

https://kubernetes.io/blog/2021/10/05/nsa-cisa-kubernetes-hardening-guidance/#:~:text=However%2C%20none%20of%20these%20cases,worker%20or%20control%20plane%20nodes

31Elevating Kubernetes Security at Fastly

Linux Capabilities: Linux divides root privileges into subsets called capabilities. By default, Docker
(and Kubernetes) give containers a limited set of capabilities (like the ability to send raw network
packets, etc.) and drop others (like no capability to modify kernel parameters, no raw socket by
default? Actually, NET_RAW is typically included by default in Docker’s baseline, which is why ping
works out-of-the-box).

•	 You can explicitly drop additional capabilities. For example, securityContext.
capabilities.drop: [“NET_RAW”] will remove the ability to create raw network packets,
which means tools like ping or nmap might not work. This is good to limit network
reconnaissance from within a container.

•	 If a container needs a specific capability (like a monitoring container might need NET_ADMIN
to adjust networking), you can add only that capability and drop all others to keep the
privilege set minimal.

The default set can be seen in Docker docs; it includes things like AUDIT_WRITE, CHOWN, NET_
RAW, etc. Often you want to drop NET_RAW at least, unless needed. Some security benchmarks
recommend dropping all capabilities and then adding back needed ones – though in practice you
might drop all and add back e.g. SETPCAP if needed.

No New Privileges: There’s a securityContext flag allowPrivilegeEscalation. This should be
set to false for most containers. It effectively prevents a process from gaining more privileges (for
example via calling setuid). If you run as a non-root user and set allowPrivilegeEscalation=false,
then even if some binary has the setuid bit, it won’t let the process elevate to root. (In restricted
PSS, this is required to be false if you run as non-root.)

Filesystem and Device Permissions
Read-Only Root Filesystem: If your container image doesn’t need to write to the root filesystem,
you can mount it read-only (securityContext.readOnlyRootFilesystem: true). This means
even if an attacker gets in, they can’t easily install malware or modify scripts on the fly in the
container’s own filesystem (they would be limited to writing to any ephemeral or mounted volumes
that you provided). Many stateless apps can run with a read-only filesystem if coded properly (they
might write to /tmp or a mounted emptyDir if needed for temp files). The NSA guide highlights this
as an often overlooked but effective hardening step.

Filesystem Groups: Using fsGroup in a pod securityContext ensures that mounted volumes
are accessible to the intended non-root user. It’s more a functionality thing than security, but it
prevents situations where someone would be tempted to run as root just to access a volume.

Device Access: By default, containers have no access to host devices (except possibly /dev/
random etc). If you don’t need to expose any host device (like a GPU or a USB), don’t use the
devices: feature of securityContext. If you do need (say GPU for ML), Kubernetes usually requires
using device plugins which handle granting limited access.

32Elevating Kubernetes Security at Fastly

Host Namespaces: Avoid using hostNetwork: true, hostPID: true, hostIPC: true in pod
specs unless absolutely needed. These settings put the container in the host’s network, PID, or IPC
namespace respectively, which breaks isolation:

•	 hostNetwork:true means the pod shares the node’s network stack (it can see all host 	
 interfaces, open ports on the host IP, etc.). This might be needed for network infrastructure 	
 pods, but it means that pod can sniff host traffic.

•	 hostPID:true means the pod can see all processes on the node. An attacker in such a pod 	
 could potentially attach to other processes (with ptrace) if not blocked by something like 	
 AppArmor.

•	 hostIPC:true similarly shares IPC namespace (rarely needed).

HostPath volumes: Mounting a hostPath (a directory from the node’s filesystem) into a pod is very
powerful. It can be useful (for example, a log collector might need to read /var/log/ on nodes). But
it’s also a way to break out: e.g., if you mount the host’s / or /etc, a container can modify host files.
Or mounting the Docker socket /var/run/docker.sock essentially gives full control of the host’s
Docker (and thus the node). Avoid hostPath unless required, and if you must, scope it narrowly
(e.g., only a specific subdirectory, read-only if possible). Admission policies can restrict hostPath
usage (e.g., only allow specific directories, or only allow certain trusted service accounts to use
them).

Seccomp, AppArmor, and SELinux
These are Linux security mechanisms that can sandbox or confine processes:

•	 Seccomp (Secure Computing Mode): Allows filtering of system calls that a process can
make. Docker has a default seccomp profile that blocks many dangerous syscalls (like
keyctl, which could tamper with kernel keyrings, etc). Kubernetes can use that default if
you don’t override it. You can also specify securityContext.seccompProfile in recent
Kubernetes (v1.19+). It’s wise to use at least the default seccomp profile for all containers
(which is automatically applied in many runtimes). For high security, you might design custom
seccomp profiles to disallow even more syscalls for specific containers that don’t need
them. In Kubernetes 1.25, there’s even an alpha feature SeccompDefault which can apply the
default profile cluster-wide by default.

•	 AppArmor: A kernel module (on Ubuntu and some other distros) that can restrict file access
and capabilities of a process. Kubernetes can set an AppArmor profile per container via an
annotation (e.g., container.apparmor.security.beta.kubernetes.io/<container_name>:
runtime/default or a custom profile name). The runtime/default is usually an AppArmor
profile that is the Docker default (often unconfined or very lenient). You can create stricter
AppArmor profiles (outside K8s) and load them on nodes, and then have pods enforce them.
For example, you could have a profile that prevents a container from reading certain host files
even if it somehow got access. AppArmor is not available on all systems (and not on COS or
Red Hat which use SELinux).

33Elevating Kubernetes Security at Fastly

•	 SELinux: Used primarily in Red Hat based systems (and OpenShift clusters). SELinux labels
and types can isolate containers. In OpenShift, by default, every pod runs with a unique
SELinux context (type) that prevents it from accessing other pods’ files even if it somehow
could reach them. SELinux also confines what system calls or file paths a process can
use based on policy. On vanilla Kubernetes, you can request an SELinux context in the
securityContext if your nodes use SELinux (fields: seLinuxOptions specifying type, level,
user, role). Most people don’t manually do this unless they have a specific requirement,
but ensuring SELinux is enabled (not set to Permissive or disabled) on the host can add an
additional layer of defense.

In summary, seccomp/AppArmor/SELinux are like safety nets: even if an attacker gets some
privilege in the container, these can stop certain actions. They are complex to fine-tune, but using
the defaults (seccomp default, AppArmor docker-default, SELinux enforcing) already improves
security.

Implementing and Verifying Workload Security Settings

Tools and Automation:

•	 Use config scanners (like kubeaudit by Shopify or kubesec or Checkov) to check YAMLs for
risky settings. For instance, kubeaudit can flag pods running as root or with privilege.

•	 Enforce via CI: e.g., reject deployment YAMLs that don’t meet your security baseline (maybe
via a GitOps pipeline, or using admission controllers as mentioned).

•	 Gatekeeper (OPA) can use policies like “no hostPath unless in a specific namespace” or
“containers must drop NET_RAW”.

•	 Kyverno can even mutate incoming pods to add safe defaults (like automatically insert
runAsNonRoot: true if not set).

•	 Kubernetes now (since 1.19) also surfaces some of this in kubectl describe or events if a
PSP or PodSecurity prevents something.

Verifying at runtime:

•	 You can exec into a running pod and check if it’s running as expected user: e.g., run id
command to see UID.

•	 Check effective capabilities: one way is grep CapEff /proc/1/status in the container
process. Or install capsh to list capabilities.

•	 Try writing to a filesystem path that should be read-only (it should fail).

34Elevating Kubernetes Security at Fastly

Monitoring and Threat
Detection in Kubernetes

Despite all preventative measures, we need visibility into our cluster’s activity to detect potential
intrusions or misuse. Kubernetes introduces new layers to monitor (applications, containers,
orchestration events), so our monitoring strategy must cover:

•	 Application and Pod Logs: for diagnosing what apps are doing.

•	 Cluster Logs and Events: like Kubernetes events, audit logs from the API server.

•	 Infrastructure Metrics: CPU, memory, network usage that might indicate anomalies (e.g.,
crypto mining typically causes high CPU).

•	 Security Alerts: specialized detection of suspicious behavior (like someone spawning a shell
in a container, or accessing a sensitive file inside a container).

In this section, we’ll discuss how to set up logging and monitoring, and how to leverage open-
source tools like Falco for runtime threat detection.

Centralized Logging and Monitoring
Application Logs: Each container writes stdout/stderr which Kubernetes can collect. By default,
kubectl logs shows these. For a production setup, use a log aggregator:

•	 EFK stack (Elasticsearch, Fluentd, Kibana): A common combination where Fluentd (or
Fluent Bit) runs on each node to tail container log files and send to Elasticsearch, and Kibana
provides a UI to search logs. Many cloud Kubernetes services offer integrated logging (e.g.,
GCP’s Stackdriver, AWS CloudWatch, Azure Monitor) that can capture these logs without you
managing the infra.

35Elevating Kubernetes Security at Fastly

•	 Loki (by Grafana) + Promtail + Grafana: A lighter-weight logging solution that stores logs in a
time-series database.

By aggregating logs, you can create alerts for certain log patterns (e.g., an application output
“ERROR” or “Unauthorized access attempt” could alert the dev team or sec team).

Kubernetes Audit Logs: If enabled, every request to the API server can be logged. You might
configure these to be sent to a secure store (like an S3 bucket or Elasticsearch). Audit logs are
crucial to detect things like “was there an attempt to create a ClusterRoleBinding giving cluster-
admin to an unexpected user?” or “who deleted resource X?”. They can be noisy, so tune the audit
policy to focus on sensitive actions (like write requests, or specifically auth failures etc.). Tie this
into your SIEM (Security Information & Event Management) system if you have one, so alerts can be
generated on suspicious API calls.

Metrics Monitoring: Use Prometheus to gather metrics from Kubernetes and applications.
Prometheus can scrape the Kubernetes metrics (via components like the metrics-server or kube-
state-metrics for resource stats). Unusual metrics can indicate trouble:

•	 A sudden spike in outbound network traffic from a pod that usually stays quiet could indicate
data exfiltration.

•	 Continuous high CPU usage in a pod that should be idle might indicate crypto mining or a
hung process.

•	 Prometheus Alertmanager can be configured to alert on such conditions (e.g., if CPU > 90%
for 5 minutes on a database pod unexpectedly, notify).

Event Monitoring: Kubernetes events (viewable via kubectl get events) provide info on things
like pods failing, images not pulling, etc. Some security-relevant events might include frequent
container restarts (could be a crash loop from an attack or probe), scheduling failures (if someone
tried to run a privileged pod but was denied). Tools like Prometheus with Alertmanager or even
custom controllers can watch events for patterns.

Runtime Threat Detection with Falco
Preventive controls reduce risk, but we also want to catch an attacker in the act if they manage
to bypass prevention. Falco is a CNCF project (a runtime security tool) that monitors system calls
on a node and applies a set of rules to detect abnormal behavior. Think of it as an IDS (Intrusion
Detection System) specifically tuned for container and cloud-native environments.

What can Falco detect? For example:

•	 A shell or exec into a container (which might indicate someone got inside or a dev is
debugging).

•	 Reading of sensitive files within a container (Falco has rules for files like /etc/passwd, /etc/
shadow, certain token paths).

•	 Unexpected network connections (e.g., a container opening a port it usually doesn’t, or
connecting to an IP on a blacklisted range).

36Elevating Kubernetes Security at Fastly

•	 Changes to configuration files or binaries in containers or on the host.

•	 Kernel module loading (in case someone tries to load a rootkit via a container).

•	 Privilege escalation attempts (like calling setns, or creating device files).

Falco works by running a daemon on each node (with the ability to tap into the kernel’s system call
stream via eBPF or a kernel module) and uses a rules file to filter events. When a rule is triggered,
Falco can log it and also send it out (to stdout, a file, or via something like Falcosidekick to various
endpoints).

Falcosidekick: This is a side tool that can take Falco alerts and forward them to many outputs:
Slack, Teams, Elasticsearch, etc., which is useful for integrating into your alerting workflows.

Other Tools:

•	 Tracee (by Aqua Security): Another eBPF-based detector similar to Falco.

•	 Kube-hunter: Not a runtime detector, but an active scanner you can run (or have in CI) to
find common misconfigurations. It’s like a pen-test tool for K8s (e.g., it will see if your etcd is
openly accessible, or if the dashboard is exposed).

•	 GuardDuty for EKS (AWS) or other cloud-specific anomaly detection: Cloud providers have
their own services that analyze cloud trail logs and network traffic for suspicious patterns
(like an EC2 instance (node) making odd DNS queries, etc).

Tying it Together with Compliance
•	 NIST CSF Detect function: All the monitoring and Falco stuff falls under the Detect (DE)
function of the NIST Cybersecurity Framework. Having these capabilities helps meet controls
about continuous security monitoring.

•	 PCI Requirement 10: If you’re under PCI, there’s a big emphasis on logging and monitoring all
access to cardholder data and detecting anomalies. Using Kubernetes audit logs and Falco to
monitor access attempts to sensitive data in containers would support those requirements.

•	 NSA/CISA Hardening: The guide suggests enabling audit logging and leveraging threat
detection tools, though it doesn’t name Falco, it aligns with that idea of behavioral monitoring.

•	 MITRE ATT&CK for Containers: Monitoring with Falco can help detect many of the
techniques in the MITRE ATT&CK container matrix (like Tactics for Execution, Persistence,
etc.). For instance, the “Execution of shell” technique or “reading /etc/passwd” technique
would be flagged by Falco rules.

Conclusion
By leveraging the MITRE ATT&CK framework and Elevation’s layered security controls, Fastly
has built a Kubernetes security strategy that is proactive, robust, and adaptive. We’ve combined
preventative, detective, and responsive controls to ensure threats are identified and neutralized at
every stage, keeping our Kubernetes environments resilient and secure.

